f(x)=n√(1 (2x)n+x2n)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:54:19
解不动点方程:f(x)=-2x+2=x得:x=2/3因此函数恒过定点(2/3,2/3)
f(x)为n+1阶多项式,所以n+1阶求导后只会剩下x的n+1次方的导数,为n+1的阶乘
f(x)=1*x^0+2*x^1+.+n*x^(n-1)+.xf(x)=x+...+(n-1)x^(n-1)+nx^n+...f(x)-xf(x)=1+x+x^2+x^3+...x^(n-1)-nx^
f(x)=|x-a|(a>0)(1)f(m)+f(n)=|m-a|+|n-a|=|m-a|+|a-n|根据|a+b|≤|a|+|b|∴|m-a|+|a-n|≥|m-a+a-n|=|m-n|即f(m)+
(1)令m=n=1,得f(1)=f(1)+f(1),f(1)=0;令m=n=-1,得f(1)=f(-1)+f(-1),得f(-1)=0;令n=-1,得f(-m)=f(m)+f(-1)=f(m).所以f
因为他是n+1阶多项式,所以求导n+1次就是最高阶系数乘(n+1)!就等于(n+1)!
#include<stdio.h>#include<math.h>//f(x)=1+x+x^2/2!+x^3/3!+...+x^n/n!直到|x^n/n|<10^-6do
f(1-x)=2^(1-x)/(2^(1-x)+√2)=2/(2+√2*2^x)=√2/(2^x+√2)=>f(x)+f(1-x)=√2/(2^x+√2)+2^x/(2^x+√2)=12(f(1/n)
f(0)=√2-1,f(1)=(2-√2)/2,f(2)=(4-√2)/14,f(-1)=(4√2-2)/7f(0)+f(1)=√2/2f(-1)+f(2)=√2/2猜想f(-n)+f(n+1)=√/
f(x)=lim(1+X)/(1+x^2n)1.|x|1f(x)=0所以f(x)={1+x,|x|1lim(x->1+)f(x)=lim(x->1+)0=0lim(x->1-)f(x)=lim(x->
n=0直接验证n>0的时候,若f'(x)与x^n/n!不互素,则它们有公共的复根,这个复根只能是0,但显然x=0不是f'(x)的根
f(x)=(x^n-1+1)/(1-x)=-[1+x+x^2+.+x^(n-1)]+1/(1-x)n阶导数,前面这项为0看后面f^n(x)=(1-x)^(-n-1)
f(x)={sin(n派-x)cos(n派+x)/cos[(n+1)派-x]}*tan(x-n派)cot[(n派/2)+x]={sin(-x)cosx/cos[(n+1)派-x]}*tanx*cot[
可去间断点,意思是,在这一点无定义或者这一点的函数值不等于函数在这一点的左右邻域所对应的函数值,但左右邻域函数值相等.显然,题目中f(x)在x=0和x=-1时,分母为0,无意义.是两个间断点.就看这两
函数f(x)满足f(n+1)=(2f(n)+n)/2f(n+1)=f(n)+n/2f(n+1)-f(n)=n/2f(20)-f(19)=19/2f(19)-f(18)=18/2……f(3)-f(2)=
f(n+1)={2f(n)+n}/22f(n+1)=2f(n)+n;f(n+1)=f(n)+n/2;f(n+1)-f(n)=n/2f(n)-f(n-1)=(n-1)/2...f(2)-f(1)=1/2
令A=x-a,B=x+a因为f(n-1)=(x-a)f(n-2)+a(x+a)^(n-2),f(n-2)=(x-a)f(n-3)+a(x+a)^(n-3),f(n-3)=(x-a)f(n-4)+a(x
设Fα(n,n)为F(n,n)分布的上α分位点则P(X>Fα(n,n))=α由题意Fα(n,n)=1由F分布的性质Fα(n,n)=1/F1-α(n,n)因为Fα(n,n)=1所以F1-α(n,n)=1