泊松分布的参数矩估计量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:57:38
λ(poisson分布参数)的意义λ表示在一定时间(单位时间)内事件发生的平均次数.例如在一天内访问某个商场的人数服从poisson分布,并且估计出平均人数为x人,这里poisson分布的参数就是平均
这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明
要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[
样本均值应服从正态分布
matlab中有函数mle(最大似然估计)可以估计常用分布的参数下面是一段测试程序,用geornd生成服从几何分布的一组数据p=0.01;x=geornd(p,[1100]);[PEstimate,P
X服从参数为λ的泊松分布,EX=λ.把EX换成一阶样本矩Xˉ,即得矩估计量为λ^=Xˉ.
泊松分布只有参数:λ------单位时间内到来的平均个数.比如说平均每小时来五辆车.则λ=5
说下λ(poisson分布参数)的意义吧λ表示在一定时间(单位时间)内事件发生的平均次数.例如在一天内访问某个商场的人数服从poisson分布,并且估计出平均人数为x人,这里poisson分布的参数就
因为:E(x)=∑ε*p(ε=k)所以:E(x)=1*p+2p(1-p)+...+kp(1-p)^(k-1)+.=p[1+2(1-p)+...+k(1-p)^(k-1)+.]因为:(1-p)+(1-p
概率论我已经忘光光了……
首先写出似然函数LL=∏p(xi)=∏{[(λ^xi)/(xi!)]·e^(-λ)}=e^(-nλ)·∏{[(λ^xi)/(xi!)]=e^(-nλ)·λ^(∑xi)·∏1/(xi!)然后对似然函数取
观测值的数量没有一个具体的要求,一般越多拟合的结果越好(前提是没有出现离群值).如果出现离群值,由于回归是使方差最小,为了达到这一目标,拟合曲线会向离群值偏转一些,以减小预测的方差,这样就会影响系数.
E[X]=NP;Var[X]=NP(1-P);矩估计:总体的一阶原点矩为E[X]=NP;样本的一阶原点矩为_X,用样本估计总体,有^p=_X/N;极大似然估计:^p=_X/N;
这个问题其实很简单按照公式积分就好了
抛砖引玉一下.Kalman滤波假设系统的噪声为高斯白噪声,似乎很适合这个问题,但是问题是kalman滤波还假设系统为线性,在已知系统非线性的情况下(指数形式),直接应用Kalman滤波不知效果如何.一
π(a)π(b)π(a)π(b)为柏松分布则P{X=k}=(a^k)e^(-a)/k!P{Y=m}=(b^m)e^(-b)/m!k,m=0,1,2.因为X,Y相互独立则他们的联合分布P{X=k,Y=m
矩估计法EX=∫xf(x)dx=(θ+1)/(θ+2)--->θ=(1-2EX)/(EX-1)极大似然法L(x,θ)=(θ+1)^n(x1.x2...xn)^θLn(L(x,θ))=nLn(θ+
大学上概率论课,我就很纳闷:这1%的概率和99%的概率有区别吗?打一个比方:有四张彩票供三个人抽取,其中只有一张彩票有奖.第一个人去抽,他的中奖概率是25%,结果没抽到.第二个人看了,心里有些踏实了,
所谓估计就是用样本的值来近似代替总体中未知参数的值,所以:既然λ的似然估计是X的均值,那它平方是的似然估计就是样本均值的平方.极大似然估计