点A在半径为3的圆O内,OA=根号3,P为圆O上一点,当角OPA取最大值时
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:42:52
1.在圆O中因为AE是圆O的直径,得到三角形ADE是直角三角形,即AD⊥DE由AC⊥CB得DE∥CB,从而∠DBC=∠EDB,由条件∠A=∠DBC=∠EDB得,在圆O中∠A=∠EDB,从而DB为圆O的
(1)BD为圆O的切线;(2)BD=5/2
连接OD在△OAD中已知角OAD=45°OA=3OD=6可用余弦定理解出AD所以AC=根号2倍的AD所以OC=AC-0A以上为基本思路仅供参考再问:能不能不用余弦定理
当⊙O与AC相切时,OA最长,故OA=Rsin∠BAC=122=2,∵点O与点A不重合,∴故OA的长应大于0,∴x的取值范围是0<x≤2.故选A.
设AC上有一点D,OD垂直AC.因为角A30度所以AO=2OD=X,因为圆o半径3所以相交时x6
(1)相切;证:OD=OA,所以角ODA=角A=30度;所以角COD=60度;因为D在中点,所以CD=AD;所以角OCD=角A=30度;所以角ODC=90度;所以OD垂直于CD,得证.(2)有正弦定理
1.证明:∵ABCD是矩形,对角线相互平分∴OA=OC,OB=ODRT△ABC中,∵OA=OC=1/2AC∴OB=1/2AC.OA=OB=OC.∵OB=OD∴OA=OB=OC=OD因此这四点都在以O为
不知道咋么做,你还是加大悬赏分吧,这样对回答者而言,更具诱惑力
在△OPA中,当∠OPA取最大值时,OA取最大值,∴PA取最小值,又∵OA、OP是定值,∴PA⊥OA时,PA取最小值;在直角三角形OPA中,OA=√3,OP=3,∴PA=√(9-3)=√6.
OA=(1,1),OB=(2,3),则OP=(2x+1,3x+1),点P在第四象限,则2x+1>0且3x+1
答案:OA=500如图:过点O作AB的垂线交AB于K 则 AK=BK &n
AB=AC=√5,BC=4=>cos∠ABC=(BC/2)/AB=2/√5OB=x,=>OA^2=AB^2+OB^2-2AB*OB*cos∠ABC=5+x^2-4x=>cos∠OAB=(AB^2+OA
先连接O’E、O’C再把O、O’连起来再延长于OB相交D那么D就是AB与小圆的相切点即O’D=r且
(1)直线BD与⊙O相切.证明:如图1,连接OD.∵OA=OD,∴∠A=∠ADO.∵∠C=90°,∴∠CBD+∠CDB=90°.又∵∠CBD=∠A,∴∠ADO+∠CDB=90°.∴∠ODB=90°.∴
关键就是算出最短的弦长和最长的弦长.最长的肯定是过直径的弦,20cm.最短的则是和直径垂直的弦.画三角形,用勾股定理算出最短的弦长开方(10*10-4*4)*2=2*根号84,比18大一点.那么整数弦
(1).∵A,B,C在单位圆上,∴|OA|=|OB|=|OC|=1取OC与X轴的负向重合,于是OC=icos180?+jsin180?=-i,5oc=-5i.∵3OA+4OB=-5OC=5i,故可在x
BC‖OAS(△BOC)=S(BAC)作OH垂直BC于H则∠HOA=90°,H为BC中点在RT△BOA中,cos∠BOA=OB/OA=1/2所以∠BOA=60所以角HOB=30角COB=60又OC=O
半径为5,那么直径就为10,直径是最长的弦了,怎么会有12的呢
由题意得:∠OPA=180°∴点A、O.P在一条直线上PA=OP+OA=3+√3再问:答案是根号6,我需要的是步骤。谢谢!再答:不好意思角看错了过点P做以O为圆心以OA为半径的的园的切线,OP⊥OA∴