点D是三角形ABC内任意一点,试说明AB AC>BD DC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:47:44
延长BD交AC于点E,则在△ABE中AB+AE>BE即,AB+AE>BD+DE在△CED中CE+DE>CD两个不等式相加得:AB+AE+CE+DE>BD+DE+CD即有:AB+AC>BD+CD
过P作PM∥AC交AB于M,过P作PN∥AB交AC于N,有AM=PN,AN=PM.△PBM中,PM+BM>PB(1)△PCN中,PN+CN>PC(2)(1)+(2)得:PM+BM+PN+CN>PB+P
PB再问:有没有更详细的再答:这个没法详细证明,只要点P是在三角形内的任意一点,它始终是比三角形的两条边短啊再答:相反的,如果点P是在三角形外的任意一点,就比那两条边长再问:那这么说这是公式了再问:太
证明AB+BC>OB+OC证:延长BO交AC于D因为AB+AD>BD=OB+OD,即AB+AD>OB+OD,又因为OD+DC>OC上述两不等式两边相加得:所以AB+AD+OD+DC>OC+OB+OD,
在△ABF中,AB+AF>BE+EF ;在△EFC中,EF+FC>EC 将两个不等式左右各自相加得:AB+AF+EF+FC>BE+EF+EC 同时两边去
你把bd连起来,ad连起来交bc,交点为0.角BDO=DBA+DAB,角CDO=DCA+DAC.就可以证明啦再问:好吧终于看懂了谢谢
延长BD,交AC于E因为AB+AE>BD+DEDE+CE>CD两式相加AB+AE+DE+CE>BD+DE+CDAB+AC>BD+CD
再问: 再问:如图,在三角形ABC中,BE平分角ABC,CE平分角ACD,BE、CE相交于点E。求证:角E=二分之一角A再答: 再问: 再问: 再问
判断:∠AMB>∠AMC.证明:∵AB=AC,∴三角形ABC是等腰三角形,∴∠B=∠C又:AD⊥BC∴AD是BC边上的高和中线,而且是∠A的平分线∴∠BAD=∠CAD∠BAM=∠BAD-∠MAD,∠C
延长DG交AB于H,则只要三角形ABC为等边三角形,AB=DG+EG+FG就成立如果AB=DG+EG+FG,则EG/sinB=EH/sinC,DG/sinA=AE/sinC则EG+DG=(EHsinB
证明:延长BD,交AC于P,则AB+AP>BP所以AB+AP+CP>BP+CP,即AB+AC>BP+CP.又PD+CP>PD,所以PD+CP+DB>DC+DB即BP+CP>DC+DB.综上所述有AB+
连接AD并延长交BC于点E.因为∠BDE=∠BAD+∠ABD(外角=不相邻两内角和)同理∠CDE=∠CAE+∠ACD因为∠BDC=∠BDE+∠CDE,∠BAC=∠BAD+∠CAE所以∠BDC>∠BAC
将三角形BCP以B为中心旋转,使BC,AB重合得到三角形ABP’全等于三角形BCP则因为∠P’BP=90所以PP’=2根号2A在三角形APP’中A,2根号2A,3A符合勾股定理所以∠APP’=90因为
用相似三角形来做.证明:∵ΔABC是等腰直角三角形,∴∠ABC=45°,∵∠DCA=90°=∠DEB,∠ADC=∠BDE,∴ΔADC∽ΔBDE,∴DC/DB=DA/DE,又∠ADB=∠CDE,∴ΔDA
证明:根据三角形内角和为180°可得:在三角形CBD中,∠CDB=180°-∠DCB-∠CBD在三角形ABC中,∠A+∠ACD+∠DCB+∠CDB+∠ABD=180°∴∠DCB+∠CBD=180°-∠
AB+AC>BD+CD证明:延长CD交AB于E∵在△ACE中AC+AE>CE∴AC+AE>CD+DE∵在△BDE中BE+DE>BD∴AC+AE+BE+DE>CD+DE+BD∴AB+AC>BD+CD
显然相等.连结AP,BP,CP.由勾股定理易得:AD²+BE²+CF²=(AP²-DF²)+(BP²-PE²)+(PC²
连接AD并延长到BC边,设为点E,角BDE=ABD+BAD,角CDE=DAC+ACD所以BDC=BAC+ABD+ACD
延长BD交AC于M 因为AB+AM>BE BM=BD+DM &nbs
面积相等1/2*PF*AB+1/2*PD*BC+1/2*PE*AC=1/2*BC*AM等边,AM=PD+PE+PF