点g是三角形abc的重心,CG延长线角AB于点D,GA等于5

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 02:24:27
已知:在三角形ABC中,D、G分别为AB、AC上的点,且BD=CG,M、N分别是BG、CD的中点,过M

证明:取BC中点E,连结ME,NE∵M,N,E分别是BG,CD,BC的中点∴EM,EN分别是△BCG,△BCD的中位线∴EM//CG,EM=1/2CGEN//BD,EN=1/2BD又∵DB=CG∴EM

已知点G是三角形ABC的重心,则向量GA+向量GB+向量GC=

=0重心是三边中线的交点,延长GA交BC于O,再延长至P,得OP=GO根据中线的性质,GA=2GO,得GA=GP连接BP,CP得BOCP是平行四边形得题中等式=0

在三角形ABC中,G为三角形的重心,AG=√2,BG=√3,CG=√5,求三角形ABC的面积.

过B点做CG的平行线,交AG延长线于D,AG与BC交于O可以证明三角形COG全等于三角形BOD=>BD=CG=5由G是重心,所以AG=2GO=GD=3.又BG=4所以三角形BGD是直角三角形,面积为3

证明G为三角形ABC所在平面内一点,GA+GB+GC=0点G是三角形ABC的重心

取BC中点D,连结并延长GD至E,使DE=GD,则四边形BGCE是平行四边形∴向量GB=向量CE∴向量GB+向量GC=向量CE+向量GC=向量GE由向量GA+向量GB+向量GC=0得:向量GB+向量G

在△ABC中 G是重心 DE经过点G且平行于BC 求三角形ADE与四边形DBCE的面积之比

连接AG交BC于F因为G是重心,所以AG/AF=2/3因为DE平行于BC,所以△ABC相似于△ADE.则三角形ADE与四边形DBCE的面积之比为(2/3)^2=4/9

麻烦的几何题三角形ABC,M为BC边的中点,G为三角形的重心.G'为点G通过点M的对称点,D为AB和CG'的交点,E为D

证明:如图:1、长AC,BG'交于N点,由于:BM=CM,GM=G'M所以四边形BG'CG是平行四边形.有:BH//DC、CL//BN因为:AL=LB,CL//BN所以:AC=

G为三角形ABC的重心,其中AG为3厘米,BG为4厘米,CG为5厘米,求三角形ABC的面积.请老师帮忙解题,

因为三角形的中线把三角形分成面积相等的两部分,本题中易证AG、BG和CG把△ABC分成面积相等的三部分.记BC的中点为D,熟知中线AD的两段AG=2GD.延长GD到H,并使DH=GD,连接HB,则△D

已知,如图,点G是三角形ABC的重心,GE平行于AB,GF平行于AC.

因为G是重心所以AD平分BC所以BD=DC因为GE//AB,所以角ABD=角GED又角ADB=角GDE所以三角形ADB相似三角形GDE所以|GD|/|AD|=|ED|/|BD|同理|GD|/|AD|=

已知三角形ABC是圆X²+Y²=9的内接三角形,点A(-3,0) 重心G(-0.5,-1),求(1)

重心G(-0.5,0),(xA+xB+xC)/3=-0.5(yA+yB+yC)/3=0xB+xC=1.5yB+yC=0XB²+YB²=9……①XC²+YC²=9

已知三角形ABC是圆X²+Y²=9的内接三角形,点A(-3,0) 重心G(-0.5,0),求(1)直

重心G(-0.5,0),(xA+xB+xC)/3=-0.5(yA+yB+yC)/3=0xB+xC=1.5yB+yC=0XB²+YB²=9……①XC&sup2

已知点G是三角形ABC的重心,三角形ABC的面积为9cm2,那么三角形BCG的面积为

重心和三角形各个顶点的连线,把三角形的面积分成相等的三部分所以三角形BCG的面积=3cm^2

设三角形ABC的重心为G,且AG=6,BG=8,CG=10则S△ABC=?

设BG交AC于D,延长BD到E,使DE等于DG,所以可证出EC=AG=8,所以GCE为6810直角三角形,剩下就简单了,SBDC=SCEB-SCDE=48-12=36SABC=36*2=72

如图,在三角形ABC中,角C=90度,点G是三角形ABC的重心,且AG垂直CG(1)求证三角形CAG相似三角形ABC (

重心是三条中线的交点延长CG交AB于E,因为G是三角形ABC的重心,所以CE为斜边AB上的中线,所以CE=AE=BE所以角BAC=角ACE因为角ACB=角AGC=90度所以三角形CGA相似于三角形AB

已知g是三角形abc的重心,ab=13,ac=5,求bc向量点乘ag向量

因为向量BC=向量AC-向量AB,向量AG=1/3(向量AB+向量AC),所以向量BC*向量AG=1/3(|AC|²-|AB|²)=1/3(13²-5²)=14

已知点g是三角形abc的重心,D,E过点G且DE平行BC求S三角形ade:S三角形abc的值

连接CG并延长交AB于H,设CE=X∵G是△ABC的重心∴CG/GH=2/1,AH=BH∵CF∥AB∴CF/DH=CG/GH=2/1∴DH=CF/2=X/2∵DE∥BC∴平行四边形BCFD∴BD=CF