用spss做回归方程时可否剔除不相关因素后再做回归方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:00:20
线性回归的r达到显著水平,说明回归是有效的.大多数自变量的回归系数不显著说明这些自变量的预测力度并不理想.可能是回归方法的问题,楼主用enter这种方法回归就会出现这种情况,改用stepwise或者是
很简单,用前进、后退或逐步法都行,一般用逐步法然后看整个模型是否有统计学意义,就是有回归和残差那项若有意义(P小于0.05)则继续看每个参数的P值若P值大于0.05,剔除~最后得方程模型当然还需要注意
在菜单中找到analyse,regression,选择linear就可以了,打开对话框,选择自变量,因变量,OK就可以了
1,画散点图,可以看出是个抛物线,也就是个一元二次方程.还不确定的话,可选择回归--曲线估计,把所有的回归模型全选上,拟合后看R2,最大的为二次方和立方,立方的第四个参数为0,所以实际上还是个二次方.
^2是决定系数,r是相关系数显著性检验
用福利的原始分数作为自变量进行分析是完全可以的.这个自变量的数据类型属于等距变量,即没有绝对零点但是有相等单位的数据.这种数据类型符合回归分析的数据要求.同时,如果觉得原始分数的代表性不是很强,也可以
方偏小,理论上是不合理的,但很难说是否可行,因为这不是检验回归方程的唯一标准,建议结合F检验和T检验来确定.
可以做的,你操作可能有误我替别人做这类的数据分析很多的再问:改论文题目了
有点低.你有几个变量再问:四个自变量,两个控制变量,两个因变量。拟合度和变量个数有关系?再答:如果是管理学的实证分析拟合度不是最重要的问题再问:这样啊,我是学管理的,顺便问一下,用spss做回归分析的
从你的回归分析系数的假设检验看出所以系数在0.05的检验水准下都没有统计学意义所以回归方程拟合的效果不好
F检验是对整个方程的检验,sig.=0,说明整个回归方程是显著的.T检验是对各个系数包括常数项的检验,sig.大于0.05的话,一般认为这个系数不显著,如果题目要求对系数进行T检验的话,那是必须舍去的
最小二乘法http://www.soku.com/search_video/q_%E6%A6%82%E7%8E%87%E8%AE%BA%E4%B8%8E%E6%95%B0%E7%90%86%E7%BB
在SPSS中将多分类变量设置为哑变量比较麻烦,其中的一种方法就是将该多分类变量转换成N-1列的哑变量,举例来说,原多分类变量有四个取值(A/B/C/D),这时需要设置三列哑变量,比如D2,D3,D4用
不太明白你的意思,如果想知道多个因子的相关性,那可以先做相关性分析.SPSS中回归的自变量都是自己加入的,做了相关性分析,在回归时只对相关性大的因子做回归.如果是筛选因子的话建议用逐步线性回归,会自动
模型摘要模型RR方调整的R方估计的标准差1.838a.703.5057.00366a.预测变量:(常量),综合指标Z,附加济掺量,水灰比,砂率.ANOVA(b)模型平方和df均方F显著性1回归695.
你要看系数的这个表格我替别人做这类的数据分析蛮多的再问:已经会了,谢谢
需要采用spss里面的非线性回归来设定模型然后求这个系数的再问:应该设计一个什么样的模型呢?还有那个参数设置我都不是太明白,您能介绍的再详细一点吗?再答:就按照你需要构建的这个模型来设置就好了只不过哪
自变量的地方选入多个变量就可以了.
这个指的是回归中的拟合模型整体显著、也就是说回归中设的自变量是有预测作用的.但二元回归的话,2个自变量(预测变量),如果要看它们各自的作用是否显著,还需看各自的B或beta值.