用级数敛散性的定义判断下列级数的敛散性 ∑(2n 1))
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:43:33
常用的有再问:谢谢!但比如下面这个级数好像以上两个方法都没有用啊。。。(-1)^(n+1)*(2^(n^2))/n!再答:当n→∞是趋于∞的,所以违反收敛必要条件,即通项趋于0,所以级数发散再问:前面
级数=lim∫e^-根号xdx=后面就是求广义积分的敛散性了.应该可以换元分部积分搞定.目测收敛吧.再答:再答:额,应该没错吧,求采纳求好评再答:…再问:额不好意思啊上午没有网就只看了一眼…再问:没有
关键是下面的不等式: 若p是奇数,有 |∑(k=1~p)[(-1)^(n+k-1)]/(n+k)|=1/(n+1)-[1/(n+2)-1/(n+3)]-…-[1/(n+p-1)-1/(n+p)]
再问:谢谢你回答了我那么多道问题但是这个书上要求用定义和性质证明再答:这个题目用定义的话显然是做不了的,,定义的方法就是把前n项求出来,但是这个式子,我们应该求不出来了,,至于性质的话,暂时想不起来,
1symsum(1/(2*n+1),0,inf)ans=Inf级数不存在3symsum((-1)*n/2/(n*(n+1)^(1/2)),0,inf)ans=-Inf级数不存在2,4无解析解2数值解为
sin∏/6+sin(2∏)/6+…….+sin(n∏)/6+…….是发散的,因为通项绝对值的极限不是0,不满足收敛的必要条件,所以直接得出结论:发散!1/3+1/3^(1/2)+1/3^(1/3)+
2sin(π/12)*sin(nπ/6)=cos{(2n-1)π/12}-cos{(2n+1)π/12}所以Sn={1/2sin(π/12)}*{cos(π/12)-cos(2n+1)π/12}cos
是收敛的,
第一题用积分审敛,第二题用比较审敛法,与pi/(n^2)比较;第三题可以在放缩的基础上用积分审敛.再问:能不能说下具体过程再答:1,先证数列递减,再把n换成x积分:发散;2,由于sin pi
等比级数求和,是收敛的.经济数学团队帮你解答.请及时评价.
这个属于交错级数,按照交错级数判断准则.(-1)^nan.1.an趋于0.2.an单调递减.此级数都满足,所以是收敛再问:an为啥单调递减再答:你也是要考研吗。判断交错及时的敛散性就是判断an的两种情
1)该级数发散.∵(2n-1)/(2n)当n趋于无穷时等于1.2)该级数收敛.当n趋于无穷时,(1/2)^n、(1/3)^n都趋于0,原式=1/2+(1/2)²+(1/2)³+……
∑(n=0,∝)2^nsin(π/3^n)当n趋于无穷大时sin(π/3^n)~π/3^n所以∑(n=0,∝)2^nsin(π/3^n)与∑(n=0,∝)2^n(π/3^n)=∑(n=0,∝)π(2/
一开始以为必定是发散的,证了半天没得到结论.后来才发现这题太复杂了.不知lz是从哪儿得到的题?记级数通项是bn,则bn/b(n+1)=【(n+1)a+a(n+1)】/(n+1)a=1+a(n+1)/(
缩放一下,通项趋向于无穷大可知收敛.再答:再答:说错了,可知发散。。。。orz再答:缩放过程出了点小问题,应该是>n^n/()^2=∞再答:结论是一样的
用比较判别法的极限形式,该级数收敛.经济数学团队帮你解答.请及时评价.
用反证法:若Σa(2n-1)收敛,则因Σa(2n)收敛,得知Σ[a(2n-1)+a(2n)]收敛,而Σa(n)是正项级数,因而是收敛的,矛盾.故Σa(2n-1)发散. 该题应选D.