用迭代法的思想 给出求根号(2 根号(2 根号(2 根号2)))的迭代格式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:05:48
牛顿迭代法建议你先好好看看数值分析
先去看看计算方法学习一下“牛顿迭代法”吧,不然就算懂了这个小程序也意义不大,真的
#includevoidmain(){floats,f0,h,x;intn,i;printf("inputn:");scanf("%d",&n);h=1.0/n;f0=4.0;s=0.0;for(i=
#include#includevoidmain(){floatx1,x0,f,f1;inti=0;//i就是当前计算的次数x1=1.5;do{i++;x0=x1;f=((2*x0-4)*x0+3)*
f(x)=x^2-3f'(x)=2xNewtonIteration:x
一个根就出后,比如设为a,可以用不着(x-a)去除,由于是多项式议程的根,所以可以除尽,这样,就化成了低次多项式.剩余的根一定在这个低次多项式方程中.数值解是真实解的近似,是有误差的.对这个近仿作除法
#include#includedoubleeps=10E-6;doublef(doublek)//原函数方程{returnlog10(k)+k-2.0;}doubleget(doublek){ret
#include#includeintmain(){doublex=1,x2;do{x2=x;x-=(2*x*x*x-4*x*x+3*x-6)/(6*x*x-8*x+3);}while(fabs(x-
这很容易的啊#include <stdio.h>#include <math.h>double funcx( double x
用迭代法求平方根的迭代公式为:要求前后两次求出的得差的绝对值少于0.00001.#include"math.h"main(){floatx0,x1,a;scanf("%f",&a);x1=a/2;do
对于求平方根,变成方程模式为f(x)=x^2-a,即求此方程的实根;下面编写了两个function函数,可以直接调用.二分法:functionx=sqrt_bisect(a)f=@(x)x^2-a;i
(150.000000+150/150.000000)/2=75.500000(75.500000+150/75.500000)/2=38.743377(38.743377+150/38.743377
y=x^2+10cosxy'=2x-10sinxx(n+1)=(2xn-10sinxn)/(xn^2+10cosxn)y是偶函数,所以两个解是相反数假设x1=2x2=2.2452x3=1.8828x4
1)迭代法设计思想最简单:x=f(x)但这种方法初值很主要,不然容易发散.2)二分法设计思想是先给定区间[a,b],要求f(a)与f(b)是异号,保证区间内与x轴有交点,求x=(a+b)/2,求f(x
1.创建一个函数%牛顿法求立方根functionx=cube_newton(a)f=@(x)x^3-a;df=diff(sym('x^3-a'));ifa==0;x1=a;elsex0=a;x1=x0
x=0:0.01:1;y=1-x-sin(x);plot(x,y,'b');观察初值,大概是在区间[0.40.6]
#include#include#defineeps1e-6voidmain(){doublea,x0,x1,dif;intn=0,flag=0;printf("Typea:");scanf("%lf
#include#include#include#defineN100#definePS1e-5//定义精度#defineTA1e-5//定义精度floatNewton(float(*f)(float
你是不复制放这的啊?格式都没看懂
牛顿迭代法的步骤大概是这样的:首先给定一个初始值x0,用它来进行迭代.迭代的方法就是在点(x0,f(x0))处做曲线的切线,与横轴得到一个交点(x1,0),x1就是第一次迭代的结果,也就是方程解的一个