由方程2x-3y e^xy=e^4所确定的隐函数的微分dy
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:48:01
f(x,y)=e^y+e^(2x)-xy=0用隐函数存在定理:dy/dx=-f'x/f'yf'x,f'y分别为f(x,y)对x,y的偏导数.f'x=2e^(2x)-yf'y=e^y-xdy/dx=-[
两边对x求导,(y+xy')e^xy=2+3y'代入(0,1)1=2+3y',y'=-1/3(y-1)=-x/3整理,得x+3y-3=0
两边对x求导,e^(2y)*2y'+3y+3xy'-2x=0,故dy/dx=y'=2x/[2e^(2y)+3x].
e^(xy)(y+xdy/dx)-4x-dy/dx=0;dy/dx(xe^(xy)-1)=-ye^(xy)+4x;dy/dx=(4x-ye^(xy))/(xe^(xy)-1).
两边对x求导有y'e^y=y+xy'整理解得y‘=dy/dx=x/(e^y-x)
把x=0代入原方程得0+e^0+y=2∴y=1方程两边对x求导得:y+xy'+e^(xy)(y+xy')+y'=0移项、整理得:[x+xe^(xy)+1]y'=y+ye^(xy)∴y'=[y+ye^(
e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/
对方程e^(-xy)+2z-e^z=2两边微分,有:e^(-xy)*d(-xy)+2*dz-e^z*dz=0-e^(-xy)*(x*dy+y*dx)+2*dz-e^z*dz=0移项,得:(e^z-2)
两边同时对X求导y+xy`=e^x+y`y`=(e^x-y)/(x-1)
用隐函数求导一般得出的还是隐函数用WPS纯手打的,如果我理解错了你的式子,请指出,我改一下就行了,但方法是一样的再问:对不起没看到你的答案
在xy+e^xy+y=e两边同时进行取微分,ydx+xdy+e^xy*(ydx+xdy)+dy=0然后求出dy/dx求出来后,在dy/dx等式两边两边同时求导,求导的过程中会有dy/dx,带入第一步求
3、e^(xy)=2x+y^3,两边取微分d[e^(xy)]=d[2x+y^3]ye^(xy)dx+xe^(xy)dy=2dx+3y^2dy[xe^(xy)-3y^2]dy=[2-ye^(xy)]dx
(e^y+xe^y*y')+(y'e^x+ye^x)=4y+4xy'(xe^y+e^x-4x)y'=4y-e^y-ye^xy'=(4y-e^y-ye^x)/(xe^y+e^x-4x)
两端对x求导数(把y看作x的函数),则1-y'=e^(xy)*(1*y+x*y')y'[xe^(xy)+1]=1-ye^(xy)dy/dx=y'=[1-ye^(xy)]/[xe^(xy)+1]
x+2y-z=3e^(xy-xz)两边对x求导,z看成是x的函数求偏导得,y看成常数,得1-əz/əx=3(y-z-xəz/əx)e^(xy-xz)=><
对两边取对数:xy+3lny=lncos(x-y)两边同时对x求导:y+xy'+y'*3/y=-tan(x-y)*(1-y')整理得:y'=tan(x-y)+y/tan(x-y)-x-3/y不知道对不
两边求微分的2xdx+2zdz=2e^zdy+2ye^zdz解得dz=(2e^zdy-2xdx)/(2z-2ye^z)=(e^zdy-xdx)/(z-ye^z)
两边对x求导xy^2+sinx=e^yy^2+2xyy'+cosx=e^y*y'y'(e^y-2xy)=y^2+cosxy'=(y^2+cosx)/(e^y-2xy)
原式=∫[1,2]dx∫[1/x,2]ye^(xy)dy=∫[1,2]dx∫[1/x,2]y/xe^(xy)d(xy)第一个对y的积分中x是常数=∫[1,2]1/xdx∫[1/x,2]yde^(xy)