java已知等差数列1,2,3···2n-1的前n项和为n^2,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 22:43:31
因为lga1,lga2,lga4成等差数列lga1+lga4=2lga2,lga1*a4=lg(a2)^2所以a1*a4=(a2)^2a1(a1+3d)=(a1+d)^2得a1=dan=ndBn=1/
n=(a1+2a2+...+nan)/(1+2+...+n)a1+2a2+...+nan=(1+2+...+n)bn=n(n+1)bn/2(1)a1+2a2+...(n-1)an=n(n-1)b(n-
A组1:a1=3,a2=7,所以d=7-3=4,所以第7项a7=a1+(7-1)d=3+6*4=25;2:a1=10,a2=8,所以d=a2-a1=-2,所以第20项a20=a1+(20-1)*d=1
a(n+1)=an+3n+2所以a(n+1)-an=3n+2同样有an-a(n-1)=3(n-1)+2a(n-1)-a(n-2)=3(n-2)+2...a2-a1=3*1+2把所有的左边,所有的右边相
由等差数列的性质Sn=na1+n(n-1)d/2=dn2/2+(a1-d/2)n=An2+Bn即A=d/2B=a1-d/2同样地Tn=nb1+n(n-1)p/2=pn2/2+(b1-p/2)n=Cn2
(Ⅰ)∵a>0,∴a2+3=a2+1+2≥2a+2>2a.…(2分)①若三个数1,2a,a2+3依次成等差数列,则有4a=a2+4解得a=2,符合题意;(4分)②若三个数2a,1,a2+3依次成等差数
仅供参考:publicclasstest{publicstaticvoidmain(Stringargs[]){inta[]={2,3,7,12,16,21,45,76};intb[]={1,5,12
由b+1-(b-1)=2b+3-(b+1)得b=0a8=-1公差d=2an=a8+(n-8)*d=2n-17
证明:取倒数1/an+1=an+3/3an=1/3+1/an1/an+1-1/an=1/3a1=1/21/a1=2{1/an}2首项1/3公差等差数列an=3/(5+n)
根据等差数列求和公式:Sn=a1*n+n*(n-1)*d/2代入数-15=3/2*n+n*(n-1)*(-1/2)/2化简,n^2-7n-60=0,解得,n=-5(舍去),n=12所以n=12an=a
解由{an}是等差数列且a1=1则a3=1+2da7=1+6da9=1+8d(d>0)又由a3,a7+2,3a9成等差数列则a3×3a9=(a7+2)^2即3(1+2d)(1+8d)=(3+6d)^2
等差数列{an}的前三项为a-1,a+1,2a+3所以:a-1+2a+3=a+1+a+13a+2=2a+2a=0所以前3项是-1,1,3an=-1+2(n-1)=2n-1Sn=-n+n(n-1)=n^
a2=a1+da4=a1+3da6=a1+5da2,a4-2,a6成等【比】数列(a1+3d-2)^2=(a1+d)(a1+5d)(3d-1)^2=(1+d)(1+5d)9d^2-6d+1=5d^2+
公差是(2a+1)-a=a+1∴an=a+(n-1)d=a+(n-1)(a+1)=a+na+n-a-1=na+n-1
2lg(2^x-1)=lg2+lg(2^x+3)lg(2^x-1)²=lg2(2^x+3)所以(2^x-1)²=2(2^x+3)令a=2^x则(a-1)²=2(a+3)a
DimPAsSingle,SJ,SHIAsInteger,FENAsInteger,MIAOAsIntegerPrivateSubForm_Load()Timer1.Interval=1000Time
publicclassN2//用循环方法{publicstaticvoidmain(Stringargs[]){intsum=0,a=1;for(inti=0;i
设等差数列首项为a,公差为d:S3=3a+3dS6=6a+15dS12=12a+66d由题意:S3/S6=1/3即:(3a+3d)/(6a+15d)=1/3解得:a=2d∴S6/S12=(6a+15d