矩阵A∧2 X=AX E A-E不可逆
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 19:32:32
用正交阵定义验证.经济数学团队帮你解答.请及时评价.
这句的前提是不对的若λ是A的特征值,则λE-A必定非满秩矩阵是否可对角化,是要看它是不是有n个线性无关的特征向量再问:确实如此!原来是我算错了..那要判断一个矩阵是不是可以对角化,就要求出所有的特征值
AX-E=X经过变换可得(A-E)X=E即X=(A-E)^(-1)现在把问题转换成了求(A-E)的逆矩阵的问题A-E为100011012根据初等行变换把AE变成EA^(-1)1001000110100
A-E=(001,0 16,160)可逆,A*X+E=A^2+X (A-E)X=A^2-E=(A-E)(A+E)∴ X=A+E=(201,0 36,162)
|A|E是矩阵的数乘一般情况:A=(aij),则kA=(kaij).即矩阵A中每个元素都乘k所以|A|E=|A|0...00|A|...0....00...|A|
由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.
设矩阵A满足A^2=E.===>(A+2E)(A-2E)=5E===>A+2E的逆矩阵为0.2(A-2E).
AB+E=A^2+BSO:AB-B=A^2-ESO:(A-E)B=(A-E)(A+E)但是你没说A=E?所以假如A=E很多解假如|A-E|不等于0那么B=A+E
(A+E)[(E+A)^(-1)(E-A)+E]=(E-A)+(A+E)E=E-A+A+E=2E再问:太谢谢你了!
P(E-A)P^-1=E-PAP^-1=E-B=[-10]所以选(D)[-2-4]
因为|A-E|=0所以|E-A|=(-1)^3*|A-E|=0同理|2E-A|=|3E-A|=|E-A|=0由此我们可以知道,矩阵A的三个特征值的为1,2,3(联系矩阵的特征值的求法)所以矩阵A可逆,
AATa=Aλa这不对再问:AAa=Aλa=λAa跟这个不一样么再答:A^T≠A再问:但是AT的特征值也是λ呀??再答:A与A^T的特征值尽管一样但它们的特征向量并不相同!
因为A^2-3A+4E=(A+E)(A-4E)+8E=0所以(A+E)(A-4E)=-8E所以(A+E)[(-1/8)(A-4E)]=E因为|A+E||A-4E|=|-8E|≠0所以|A+E|≠0所以
刚看到因为A^2-3A+2E=0所以A(A-3E)=-2E所以A-3E可逆,且(A-3E)^-1=(-1/2)A.
因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).
(A-E)X=(B-2E)X=(B-2E)(A-E)^-1其中A^(-1)表示矩阵A的逆矩阵
(A-2)X=A这种写法是不对的!应该写为(A-2E)X=A.2E是矩阵与数的乘法.kA是A中每个元素都乘k,这是数乘的定义.即kA=(kaij).所以2E=(以3阶为例)200020002
因为A+E不可逆所以|A+E|=0所以-1是A的一个特征值所以|A|/(-1)=-2是A*的一个特征值
由已知,(A-E)X=A^3-E=(A-E)(A^2+A+E)由于A-E可逆所以X=A^2+A+E=4030130304