矩阵A≠0,则A²等于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/14 04:16:10
已知A为奇数阶矩阵,行列式大于0,A×(A的转置)等于单位矩阵,证明单位矩阵减去A不可逆

|E-A|=|AA^T-A|=|A(A^T-E)|=|A||A^T-E|=|A||A-E|=(-1)^n|A||E-A|=-|A||E-A|因为|A|>0所以|E-A|=0.

矩阵A的行列式等于0,A的特征值

因为A的所有特征值的乘积等于A的行列式所以|A|=0时,A一定有特征值0.

设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0

设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0设A=[aij],其中i,j=1,2,...,n令C=A^2=A×A,依据矩阵乘法法则,C中主对角线上元素cii就是A的第i行和A第i列元素对

已知A为奇数阶矩阵,行列式大于0,A×A的转置等于单位矩阵,证明单位矩阵减去A不可逆

记得帮你答过了的|E-A|=|AA^T-A|=|A(A^T-E)|=|A||A^T-E|=|A||A-E|=(-1)^n|A||E-A|=-|A||E-A|因为|A|>0所以|E-A|=0.

A为n阶方阵,A的行列式为d不等于0,则A的伴随矩阵的逆矩阵等于?

A/d再问:我也算的这么多再问:但答案不是这个再答:那是什么再问:后面还有个-3不知道怎么来的再答:矩阵-3?是不是答案错了再问:不知道,可能是吧,我到时问问老师再答:别忘了告诉我结果^O^再问:Ӧ�

如果矩阵A乘以它的转置矩阵等于0,则矩阵A等于

数学公式这里不好写,所以就用图片了.

二次型的系数A矩阵秩等于2为什么行列式A的值等于0

那A的阶至少是3哈再问:可以解释再清楚一点吗?再答:因为n阶方阵A的秩小于n的充分必要条件是|A|=0.所以若|A|=0,则r(A)=2

设A为n阶矩阵A的m次方等于0矩阵,证明E-A可逆

A^m=0A^m-E^m=-E^m针对左边利用展开式(A-E)[A^(m-1)+A^(m-2)E+……+E]=-E矩阵可逆的定义就是看这个矩阵和另外一个的乘积是否为单位阵这个只能这种方法

设矩阵A的K次方等于0矩阵,如何证明E-A可逆,并求E-A的逆

(E--A)(E+A+A^2+A^3+...+A^(n--1))=E+A+A^2+A^3+...+A^(n--1)--A--A^2--A^3--.--A^n=E--A^n=E,因此E-A可逆,且(E-

数0乘以矩阵a等于0矩阵吧?一个非0矩阵乘以0矩阵永远等于0矩阵吧?

一个实数k乘以矩阵A=[a11a12;a21a22]等于矩阵B,B=[k*a11k*a12;k*a21k*a22].所以你说的是正确的.

设n阶矩阵A满足A方等于A,并且A不等于E,证明A的行列式等于0

AA=A=>AA-AE=O=>A(A-E)=O=>|A|*|A-E|=0但A≠E,所以|A|=0

为什么矩阵A的平方等于A,则A等于E或0不对

A^2=A,则(A-E)A=0,若A可逆,则A-E=0,A=E;若A-E可逆,则A=0;但如果A,A-E都不可逆,那么不能有A等于E或0;反例:0001

如果A的K次方等于0,则E+A的逆矩阵等于?

因为(E+A)[E-A+A^2-A^3+.+(-1)^(k-1)A^(k-1)]=E-A+A^2-A^3+.+(-1)^(k-1)A^(k-1)+A-A^2+A^3+.+(-1)^(k-1)A^k=E

为什么矩阵A可逆,则矩阵AB的秩等于矩阵B的秩,同样,矩阵B可逆,则矩阵AB的秩等于矩阵A的秩?

A可逆的充要条件是A可以写成初等阵的乘积所以AB就是B左乘一些初等阵,而左乘初等阵就是对B进行初等行变换,所以秩不变.即r(AB)=r(B)B可逆的充要条件是B可以写成初等阵的乘积所以AB就是A右乘一

矩阵A的k次方等于0,则A的秩为多少

这个不一定.根据你给的条件只能说明A的若当型中都是形如的若当块,并且最大的若当块是k阶的,也就是说A的秩最小是k-1多少不一定.

n阶矩阵A的n次方等于单位矩阵,则A相似于对角矩阵

A可对角化的充要条件是A的极小多项式没有重根这里A的极小多项式一定是x^n-1的因子,显然无重根

n阶方阵满足A^2-2A+E=0,则A的逆矩阵等于?

因为A^2-2A+E=0所以A(A-2E)=-E所以A可逆,且A^-1=2E-A.