矩阵a和矩阵b的秩的和小于n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:16:07
考察相抵变换A00B=>A0AB=>AAAA+B右下角子阵的秩当然不超过整个矩阵的秩,从而r(A+B)
因为A+B的列向量组可由A的列向量组的一个极大无关组与B的列向量组的一个极大无关组合并的向量组线性表示
你确定题目没错吗?求A的特征值为0的特征向量就是解方程组Ax=0求B的特征值为0的特征向量就是解方程组Bx=0如果A与B的秩不同的话,这两个方程组不可能同解的.再问:谢谢,也觉得题目有问题
矩阵的满秩分解,我以前回答过同样的问题.见链接.貌似有一处笔误:应该是“现在将T分解,T=U*V”而不是“现在将T分解,B=U*V”
1.设该矩阵为M,n行n列.由于该矩阵的元素性质,他的左上角的n-1行n-1列的子矩阵是严格对角占优的(即对角元的绝对值大于该行其他元的绝对值的和,严格对角占优的矩阵非退化),从而M的秩>=n-1.但
voidmain(){intA[N][M]={0};intB[N][M]={0};intC[N][M]={0};inti,j;for(i=0;i再问:不好意思,我是要用到NEW和DELETE和指针的。
也是对的,看一下Sylvester不等式
A^-1B与B^-1A一般不相等矩阵的乘法不满足交换律
//应该加上for(i=0;i
你自己题目抄错了
“行等价矩阵”指的是经初等行变换得到的矩阵吗?那答案是:不相似再问:能证明一下吗再答:比如111001行变换化成01,但它们不相似
令AB=CA^(-1)=B*C^(-1)C^(-1)=(1,-1,0;0,1,0;0,0,1)接下来自己算一下吧^_^
AB=0,求证r(A)+r(B)≤n,Sylvester公式r﹙A﹚+r﹙B﹚-n≤r﹙AB﹚右边为零,即得.[Sylvester公式的证明,教材上都有.用分块矩阵的初等变换,打起来麻烦,自己看吧!]
矩阵A的秩不可能大于它两维尺度(m,n)中最小的那个所以r(A)再问:再问:这个例子的话。。。。再问:答案是小于m再答:本来就该小于m啊?难道我说的不是这个?再问:你说的是n………再答:n
硬背当然不好想了.可以这样从意义上来形象地理首先秩可以理解为线性无关的列向量的组数.那么矩阵A、B的秩分别a、b,那么就是分别有a、b个线性无关的列向量了.而线性相关的就是由向量加减后是否平行决定的.
|A|E的秩是n|A|E的秩肯定不超过A的秩!当|A|≠0时,|A|E的秩是n,此时A可逆,所以R(|A|E)=R(A).当|A|=0时,|A|E=0,秩是0,R(|A|E)≤R(A).
你的做法最多仅适用于A和B都可对角化的情况,如果B不可对角化你的做法就失效了即使A和B都可对角化,你还得额外证明它们的特征值完全相同(或者特征多项式相同)一般来讲要证明两个矩阵相似最好还是直接构造相似
是m阶,与m,n大小无关,如果是ba则是n阶!线性代数上就有.
因为在定义的时候并不知道AB=E就意味着BA=E,也就是说矩阵的乘法运算一般不具有交换性,因此AB和BA不一定相等.所以在定义逆矩阵的时候就要求AB和BA都是E才行.只不过后面才证明了如果AB=E,则