矩阵a和矩阵b的秩的和小于n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:16:07
两矩阵和的秩小于等于两矩阵秩的和?

考察相抵变换A00B=>A0AB=>AAAA+B右下角子阵的秩当然不超过整个矩阵的秩,从而r(A+B)

若A,B是MxN阶矩阵,如何证明A+B矩阵的秩小于等于A矩阵的秩和B矩阵的秩的和

因为A+B的列向量组可由A的列向量组的一个极大无关组与B的列向量组的一个极大无关组合并的向量组线性表示

A和B均为n阶矩阵,他们秩和小于n,证明他们特征值为零的特征向量相同

你确定题目没错吗?求A的特征值为0的特征向量就是解方程组Ax=0求B的特征值为0的特征向量就是解方程组Bx=0如果A与B的秩不同的话,这两个方程组不可能同解的.再问:谢谢,也觉得题目有问题

证明 如果一个s*n矩阵A的秩为r,则有s*r的列满秩矩阵B和r*n行满秩矩阵C使得A=BC

矩阵的满秩分解,我以前回答过同样的问题.见链接.貌似有一处笔误:应该是“现在将T分解,T=U*V”而不是“现在将T分解,B=U*V”

两个关于矩阵的问题如果一个实矩阵满足对角元大于0,其余元均小于0,且每一行和为0,求其秩A和B是实矩阵,且存在C和D,使

1.设该矩阵为M,n行n列.由于该矩阵的元素性质,他的左上角的n-1行n-1列的子矩阵是严格对角占优的(即对角元的绝对值大于该行其他元的绝对值的和,严格对角占优的矩阵非退化),从而M的秩>=n-1.但

C++中输入矩阵的行和列,A矩阵元素是行+列,B矩阵元素是行-列,输出A矩阵B矩阵.C矩阵为A乘以B.输出C矩阵

voidmain(){intA[N][M]={0};intB[N][M]={0};intC[N][M]={0};inti,j;for(i=0;i再问:不好意思,我是要用到NEW和DELETE和指针的。

若s×n矩阵A和n×s矩阵B满足AB=0,则秩(A)+秩(B)≤n?

也是对的,看一下Sylvester不等式

矩阵A的逆矩阵乘以矩阵B和矩阵B乘以矩阵A的逆矩阵 结果相等吗

A^-1B与B^-1A一般不相等矩阵的乘法不满足交换律

求矩阵A和它增广矩阵的秩,

你自己题目抄错了

矩阵A和B相似,A的行等价矩阵和B相似吗?

“行等价矩阵”指的是经初等行变换得到的矩阵吗?那答案是:不相似再问:能证明一下吗再答:比如111001行变换化成01,但它们不相似

已知矩阵B和AB求A的逆矩阵

令AB=CA^(-1)=B*C^(-1)C^(-1)=(1,-1,0;0,1,0;0,0,1)接下来自己算一下吧^_^

线性代数中,设AB均为n阶非零矩阵,且AB=0,则A和B的秩 都小于零 答案上说由题可知

AB=0,求证r(A)+r(B)≤n,Sylvester公式r﹙A﹚+r﹙B﹚-n≤r﹙AB﹚右边为零,即得.[Sylvester公式的证明,教材上都有.用分块矩阵的初等变换,打起来麻烦,自己看吧!]

设A为mxn矩阵,B为nxm矩阵,则当m>n时,矩阵AB的秩为什么小于m

矩阵A的秩不可能大于它两维尺度(m,n)中最小的那个所以r(A)再问:再问:这个例子的话。。。。再问:答案是小于m再答:本来就该小于m啊?难道我说的不是这个?再问:你说的是n………再答:n

为什么两个矩阵相加组成的新矩阵的秩小于等于原来两个矩阵的秩的和?

硬背当然不好想了.可以这样从意义上来形象地理首先秩可以理解为线性无关的列向量的组数.那么矩阵A、B的秩分别a、b,那么就是分别有a、b个线性无关的列向量了.而线性相关的就是由向量加减后是否平行决定的.

两矩阵乘积的秩小于每个矩阵的秩,那么n阶矩阵A和它的伴随矩阵乘积是|A|E,秩是n,不一定比A的秩小?

|A|E的秩是n|A|E的秩肯定不超过A的秩!当|A|≠0时,|A|E的秩是n,此时A可逆,所以R(|A|E)=R(A).当|A|=0时,|A|E=0,秩是0,R(|A|E)≤R(A).

n阶矩阵A和对角矩阵相似的充分条件是:A有n个不同的特征值和A是实对称矩阵.我想问:一般题目是证明n阶矩阵A和B相似,这

你的做法最多仅适用于A和B都可对角化的情况,如果B不可对角化你的做法就失效了即使A和B都可对角化,你还得额外证明它们的特征值完全相同(或者特征多项式相同)一般来讲要证明两个矩阵相似最好还是直接构造相似

a是m*n矩阵,b是n*m矩阵,ab是几阶矩阵?如果是m阶矩阵,为什么?题目中未说明m和n的大小?

是m阶,与m,n大小无关,如果是ba则是n阶!线性代数上就有.

矩阵可逆的定义和推论《线代》上,逆矩阵的定义:对于n阶矩阵A,如果存在矩阵B,使得AB=BA=I,那么A称为可逆矩阵,而

因为在定义的时候并不知道AB=E就意味着BA=E,也就是说矩阵的乘法运算一般不具有交换性,因此AB和BA不一定相等.所以在定义逆矩阵的时候就要求AB和BA都是E才行.只不过后面才证明了如果AB=E,则