矩阵特征值里的基础解系怎么求

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:46:51
关于矩阵特征值的求法,怎么用MATLAB软件求?

A1 =[ 1, 1/3, 1, 1/5, 1/4][ 3,   1, 2, 1

已知特征值和某个特征值的特征向量如何求矩阵特征值所属的矩阵?

这个问题就复杂了.如果知道一个特征值的特征向量的话,很多时候都是不可求的,少数是可求的.可求的情况:矩阵为对称矩阵,无其他的特征值于知道特征向量的特征值相同时,且其他的特征值相同,可求因为不同的特征值

特征向量与特征值对与求原矩阵的基础解系有什么帮助?

若x是A的属于特征值a的特征向量则x是(A-aE)X=0的非零解若a=0原矩阵的基础解系是属于特征值a的特征向量你是不是遇到什么具体问题了把原题拿来,我帮你看看再问:我是遇到了一句话,想的不是很明白,

已知矩阵的特征值,怎么求矩阵里含有的未知数?

相关知识点:1.方阵A的迹(即主对角线元素之和)等于A的所有特征值之和2.方阵A的行列式等于A的所有特征值之积若不能解决问题,可直接计算|A-λE|求出A的特征值

这是书上例题的一道求矩阵的全部特征值和特征向量的题,但我不懂的是求基础解系的部分:

不好意思,这两天有事没上网. 齐次线性方程组的基础解系不是唯一的,两个基础解系都对只要满足:是Ax=0的解线性无关个数为n-r(A)则都是基础解系

知道矩阵的特征值和特征向量怎么求矩阵

由于Aα1=λ1α1,Aα2=λ2α2,所以A[α1α2]=[α1α2]diag(λ1λ2),其中[α1α2]为由两个特征向量作为列的矩阵,diag(λ1λ2)为由于特征值作为对角元的对角矩阵.记P=

已知逆矩阵的特征值,怎么求矩阵的特征值

矩阵的特征值等于逆矩阵特征值的倒数,反过来也一样,记住这个定理哦

怎么求矩阵的特征值与特征向量

A-vE=|3-v1|=v^2-2v-8=(v-4)(v+2)|5-1-v|特征值为:4,-2.对特征值4,(-11;5-5)*(x1,x2)'=(0,0)'对应的特征向量为:(1,1);对特征值-2

这个矩阵的n次方怎么求?(用特征值)

第一步,求特征值第二步,求特征向量,对应可逆矩阵具体请看图片再答:再答:

这个矩阵的特征值和特征向量怎么求

|A-λE|=1-λ2321-λ3336-λr1-r2-1-λ1+λ021-λ3336-λc2+c1-1-λ0023-λ3366-λ=(-1-λ)[(3-λ)(6-λ)-18]=(-1-λ)[λ^2-

矩阵特征值的基础解系 怎么求出来的?如图线性代数矩阵特征值求解

再问:谢谢。但是怎么确定α1、α2分别取1和0的呢?再答:这种题有一个固定的套路,当你求出x1.x2.x3的函数关系时,一般就是分别取(1,0,x3)和(0,1,x3)再问:再问:谢谢。那这个题的基础

A的伴随矩阵的特征值怎么求,

设λ是A的特征值,α是A的属于特征值λ的特征向量则Aα=λα.等式两边左乘A*,得A*Aα=λA*α.由于A*A=|A|E所以|A|α=λA*α.当A可逆时,λ不等于0.此时有A*α=(|A|/λ)α

怎么用matlab求复数矩阵的特征值 特征向量?

跟实矩阵式一样的[u,v]=eig(A)可以自己查看>>helpeig再问:我这样试了试怎么算出来跟手算出来不一样??例如A=[-1,i,0;-i,0,-i;0,i,1];[u,v]=eig(A)再答

如何求矩阵的特征值

把线代矩阵那一章的书上习题先看熟了再问!再问:再问:话横线那一步怎么得出的再答:那么简单的三阶行列式你难道不会化吗?再问:那您说怎么化再答:再答:SoEasy啦,线代这本书一个礼拜都不用就可以精通了,

求矩阵A的特征向量时,那个基础解系a是怎么算出来的?

对某个特征值λ,解齐次线性方程组(A-λE)X=0

求矩阵的特征值和特征向量,为什么要求基础解系呢?还有就是怎么求的,

特征向量是相应齐次线性方程组的非零解如果这不清楚的话,建议你系统地看看教材,注意以下结论:1.λ0是A的特征值|A-λ0|=02.α是A的属于特征值λ0的特征向量α是齐次线性方程组(A-λ0E)X=0

一道线代求矩阵特征值与特征向量的题怎么解?

设矩阵A的特征值为λ则A-λE=2-λ-125-3-λ3-10-2-λ令其行列式等于0,即2-λ-125-3-λ3-10-2-λ第3列加上第1列乘以-2-λ=2-λ-1λ^2-25-3-λ-5λ-7-

矩阵的基础解系怎么求?

A是一个n阶方阵,r(A)=n-1所以AX=0的基础解系的解向量的个数为1又A的每一行元素加起来均为1则A(1,1,...,1)^T=(1,1,...,1)^T所以x=(1,1,...,1)^T是AX