积分上限正无穷下限0 xe^-x的平方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 22:43:47
∫xlnxdx(1→e)=½∫lnxdx²(1→e)=½x²lnx(1→e)-½∫x²dlnx(1→e)=½e&s
定积分dx/(e^x+1+e^3-x)上限正无穷,下限0=∫(0,+∞)e^x/(e^2x+e^x+e^3)dx=∫(0,+∞)e^x/((e^x+1/2)^2+e^3-1/4)dx=1/√(e^3-
用分步积分法,先把e^(-x)放到微分符号后面,然后使用分部积分公式:原式=-∫x^3de^(-x)=∫e^(-x)d(x^3)-(x^3)e^(-x)(一定要写上下限)注意上式中的后面一项在正无穷大
∫xe^(-x)dx=lim∫xe^(-x)dx=lim[-xe^(-x)-e^(-x)]|=lim[-ue^(-u)-e^(-u)+1]=lim[-u/e^u-1/e^u]+1=1收敛
∫(0,∞)x*e^(-x^2)dx=1/2∫(0,∞)e^(-x^2)d(x^2)=-1/2*e^(-x^2)(0,∞)=(-1/2)*(0-1)=1/2
∫e^(-x)dx=-e^(-x)=-e^(-x)Ix=+∞+e^(-x)Ix=0=0+1=1.
∫-e^(-x)dx=e^(-x)+C虽然是反常积分,还是可以直接运用牛顿莱布尼茨公式得到定积分=[lim(x→∞)e^(-x)]-e^(-2)=0-1/(e²)=-1/e²
如图再问:好,谢谢再答:不客气!请采纳!
采用分部积分:∫(-∞,0)xe^xdx=∫(-∞,0)xde^x=xe^x(-∞,0)-∫(-∞,0)e^xdx=(xe^x-e^x)(-∞,0)=-1
∫(-inf,+inf)dx/(16+x^2)=∫(-inf,+inf)dx/16(1+(x/4)^2)=(1/4)*∫(-inf,+inf)d(x/4)/(1+(x/4)^2)=1/4arctan(
∫xe^-x(y+1)dy=∫e^-x(y+1)dx(y+1)=-e^-x(y+1)|y=无穷-e^-x(y+1)|y=0=0—e^-x=-e^-x再问:∫xe^-x(y+1)dy=∫e^-x(y+1
∫[0,+∞]e^(-5x)dx=-1/5*e^(-5x)|[0,+∞]=1/5.这里用到了:lim(x->+∞)e^(-5x)=0.
结果:Pi/(2*sqrt(2))这个积分的确有些麻烦,看截图:
题有问题,按定义域知1-ln(x)^2>0-1
原式=-x^5e^(-x){0~正无穷}此极限为0+∫x^4e^(-x)dx=5!∫e^(-x)dx=120