lim (arctant)2dt

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:49:49
求上下极限lim(x趋近0)∫(o-x){根号下(1+x^2)dt}/x

x趋近0,∫(0-x){根号下(1+t^2)dt}趋近0,使用罗比达法则:lim(x趋近0)∫(0-x){根号下(1+t^2)dt}/x=lim(x趋近0)d/dx∫(0-x){根号下(1+t^2)d

=ln(1+t^2),y=arctant 求d²y/dx²的时候d/dt*(dy/dx)=-(1/2

直接对x求导算不出,所以先对t求导,再对x求导

求极限 lim→+0 ∫(√x,0) ((1-cost^2)dt)/(x^(5/2))

答:lim(x→0+)[∫(√x→0)(1-cost²)dt]/[x^(5/2)]属于0----0型,可以应用洛必达法则=lim(x→0+)-(1-cosx)*(1/2√x)/[(5/2)*

高数 极限lim [2arctant x -ln(1+x/1-x)]/x^n=C ,x趋于0求n和C

原式=limx→0{2/(1+x^2)-[(1-x)/(1+x)]*[1/(1-x)+(1+x)/(1-x)^2]}/n*x^(n-1)=limx→0[2/(1+x^2)-2/(1-x^2)]/n*x

lim (x趋近于无穷大)[∫(0,x)t^2*e^(t^2-x^2)dt]/x

lim(x趋近于无穷大)[∫(0,x)t^2*e^(t^2-x^2)dt]/x=lim(x趋近于无穷大)[∫(0,x)t^2*e^(t^2)dt]/(x*e^(x^2))罗比达法则lim(x趋近于无穷

急求一道极限题目lim→0(∫[0,x]cost^2dt)/x

分子分母同导;lim→0(∫[0,x]cost^2dt)/x=lim→0(cosx^2)/1=cos0=1

dt

解题思路:由机械能守恒定律可以判断ABD是可能的,由圆周运动的规律,可以确定D不可能。解题过程:见附件

求极限lim(x→+∞)∫[0,x](arctant)²dt/√(x²+1)

题目最后一个x是否应该为t?如果是,解答如下lim(x→+∞)∫[0,x](arctant)²dt/√(t²+1)=lim(x→+∞)∫[0,x](arctant)²d(

求极限x-->0 lim [∫cos (t^2) dt] /x 其中不定积分为 0--->x

利用洛比达法则.x-->0lim[∫cos(t^2)dt]/x=x-->0limcos(x^2)=1

求函数f(x)=∫(上限x,下限0)(t+1)arctant dt 的极值

求函数f(x)=(0,x)∫(t+1)arctantdt的极值令df(x)/dx=(x+1)arctanx=0得驻点x₁=-1,x₂=0为书写简便,先求不定积分.∫(t+1)a

求极限lim(x趋向0)(∫ln(1+t)dt)/x^4 上限x^2下限0

极限lim(x趋向0)(∫ln(1+t)dt)/x^4上限x^2下限0=lim(x->0)ln(1+x²)·2x/4x³=1/2lim(x->0)ln(1+x²)/x&#

lim(x->0)1/x∫(0到sinx)cos(t^2)dt

原式=lim(x->0){[∫(sinx,0)cos(t²)dt]/x}=lim(x->0)[-cosx*cos(sinx)²](0/0型极限,应用罗比达法则)=(-1)*1=-1

lim x→0[∫上x下0 cos(t^2)dt]/x ; lim x→0[∫上x下0 ln(1+t)dt]/(xsin

lim(x→0)[∫上x下0cos(t²)dt]/x=lim(x→0)cos(x²)0/0型,用洛比达法则=1lim(x→0)[∫上x下0ln(1+t)dt]/(xsinx)=li

高数洛必达(急)lim(tanx)^<2x-派>,x趋向2/派.lim( §0 x.e^t^2.dt)^5/ §0~x.

这个问题很简单,套用洛克弗格定律一下就解决了.你去试试,在运算时记住伍尔顿换位法.我怕是数理学硕士,有什么问题可以问我.

lim→0[∫(上限x,下限0)(1+t^2)e^t^2dt]/xe^x^2 lim→0[∫(上限x^2,下限0)cos

第一题积分式与x无关分母可以提到等式外面去做剩下积分式的分母由于x→0所以上面积分从0积到0显然趋向于0分母带0进去算也趋向于0于是是0/0型分式用罗比大法则上下求导上面积分式为变限积分求导上限是x时

lim(∫根号(t)dt/sin(xπ),(1,x^2),x趋于1,求极限,

原式=lim(x->1)2x²/πcos(xπ)利用罗比达法则=2/π(-1)=-2/π

题目是这样的:lim(x->0)∫[cos(t^2)dt]/x

对积分项求导时,要对上下限中的项同时求导,这里的2X求导后,正好得到结果