lim(tan4x-sinx)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:40:17
用洛必达法则,当分子分母都分别趋向0时可以先分别求导在求极限,然后X趋向0可以直接代入
首先,先证明:当0
tanx-sinx/x^3=[sinx(1-cosx)]/(x^3*cosx)=(sinx/x)*(1-cosx)/x^2(当x趋于0时,cosx的极限是1)=1*1/2(1-cosx与1/2*x^2
0^无穷大型都是转换成指数后利用洛必达法则y=(1-sinx)^(1/x)lny=(1/x)ln(1-sinx)=ln(1-sinx)/x分子分母同求导得到分子导数=-cosx/(1-sinx)分母导
lim(x趋于0)x2/sinX=lim(x趋于0)x2/x=lim(x趋于0)x=0(等价无穷小代换)lim(x趋于0)cosX-1/(x2+x)=lim(x趋于0)-1/2*x^2/x(x+1)=
是x→0吗?属于1^(∞)型,取自然对数,用罗彼塔法则,分子、分母同时求导,原式=lim[x→0]ln(x+e^2x)/sinx=lim[x→0][(1+2e^2x)/(x+e^2x)]/cosx=[
楼主的对这部分的想法混淆得太厉害,真是剪不断,理还乱.我也不是老师也不知道给你从何说起,就一个问题一个问题的来吧.第一题:lim(x+sinx)/x(x→∞)=lim(1+sinx/x)=1+lims
x^sinxx是不能小于0的吧.不然会出现复数的实数次幂(在实数范围内没有意义的形式)x>0时,可以取对数ln(x^sinx)=sinxlnx极限与xlnx相同【注意到sinx趋向0(可用阶等价的x替
lim(x→0)(x+sinx)/tanx=lim(x→0)x/tanx+lim(x→0)sinx/tanx=1+1=2
一下都省略极限过程x→0设A=lim(cosx+sinx)^1/x,则lnA=limln(cosx+sinx)/x=lim[ln(cosx+sinx)]'/x'【L'Hospital法则】=lim(c
x->0时,sinx/x——>1,tanx/x=sinx/(x*cosx)=1故所求为2
x-xcosx=x(1-cosx),1-cosx与x^2/2等价,所以,lim(x→0)(x-xcosx)/(x-sinx)=lim(x→0)(1/2×x^3)/(x-sinx)使用洛必达法则=lim
这是极限的和乘原则.lim(a+(*)b)=lima+(*)lim
注意sina是一个常数,对它求导时它的导数等于0lim[(sinx-sina)/(x-a)]上下同时求导=lim[(cosx-0)/(1-0)]=limcosx=cosa
limlntan(4x)/lntanx(∞/∞)=lim[4(sec4x)^2/tan(4x)]/[(secx)^2/tanx]=lim[4/(4x)](x/1)=1
有两种方法,都稍微麻烦一些:1、利用罗比达法则,分子分母求导lim(e^sinx-e^x)/(sinx-x)=lim(cosxe^sinx-e^x)/(cox-1)第二次分子分母求导:=lim[(e^
(x→0)lim(x-sinx)/(x+sinx).罗比达法则=(x→0)lim(1-cosx)/(1+cosx)=0/2=0
lim(x->0)(tan4x)^2/[2(1-(cosx)^2)=lim(x->0)(4x)^2/[2(1-(cosx)^2)(tanx~x,x->0)(0/0)=lim(x->0)32x/[2(2