Lim(x,y)~(0,0)(2-xy) x∧2 y∧2的极限

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 02:28:34
证明极限lim(x+y)/(x-y)当x趋近于0,y趋近于0 不存在

以直线y=kx(k≠1)趋于(0,0)则lim(x+y)/(x-y)=lim(x+kx)/(x-kx)=lim(1+k)/(1-k)极限的取值会随k的变化而变化因此,极限lim(x+y)/(x-y)当

lim(x,y)→(0,0) (x^2)y/(2x-y)的极限存不存在

经济数学团队帮你解答,有不清楚请追问.请及时评价.

一道数学题:lim(x,y)→(0,0)(x-y)/(x+y)

应该分二种情况讨论,1、当X→0时Lim(x-y)/(x+y)=Lim(-y)/y=-12、当Y→0时Lim(x-y)/(x+y)=Limx/x=1

lim xy/(x+y)的极限不存在怎么证明啊? (x,y)--(0,0)

当沿曲线y=-x+x^2趋于(00)时,极限为lim(-x^2+x^3)/x^2=-1;当沿直线y=x趋于(00)时,极限为limx^2/2x=0.故极限不存在.再问:刚问阁下是干什么地,这么强再答:

求下列各极限 lim(x,y)→(0,1) (2-xy)/(x^2+2y)

f(x,y)=(2-xy)/(x²+2y),这是一个初等函数,初等函数在定义域内均连续,而(0,1)显然是定义域内的点,因此连续,因此可直接算函数值就行了.lim(x,y)→(0,1)(2-

高数极限题请教lim(x,y)->(0,0) x^2y^2 ln(x^2+y^2)求教

答案是0.首先,当0再问:�ܲ����������x=��sin��y=��cos��再答:�Ҳ����������˼�ǡ��ü�������������á�x=��sin��y=��cos�ȡ���

证明lim(x,y)→(0,0),xy/根号(x²+y²)=0

因为│xy/(x^2+y^2)^(1/2)│≤0.5(x^2+y^2)^(1/2)任给小正数ξ>0,要使│xy/(x^2+y^2)^(1/2)│<ξ,只要(x^2+y^2)^(1/2)

高数:x→0,y→2lim[ln(x+e^xy)/x]=?

运用函数连续性,化成一元函数求极限x→0,y→2lim[ln(x+e^xy)/x]=x→0lim[ln(x+e^(2x)]/x【0/0型】=x→0lim[ln(1+(x+e^(2x)-1)]/x=x→

求极限lim(y-x)x/根号下(x^2+y^2) x,y趋近于0

再问:请问您是不是有《大学数学习题册》的答案呀?可不可以发给我呀?我邮箱qf9292@163.com再答:真对不起,我没有。这题是我自己做出来的。

二元函数求极限:lim sin(x^2+y)/(x^2+y^2) x→0,y→0

题目有问题.无解应该有个条件,沿xxx曲线趋近与(0,0)再问:二元函数求极限:limsin(x^2*y)/(x^2+y^2)x→0,y→0不好意思,麻烦了有个符号错了再答:还是无解,除非第一个括号是

证明lim[(xy)/(x平方+y)],x趋于0,y趋于0时的极限不存在.

令y=x^3-x^2,带入原式,则当x,y趋于0时,原式趋于-1,再令y=x^2,带入原式,则当x,y趋于0时,原式趋于0,所以原式的极限不存在

证明 lim x-无穷大 cos2n/(n+1)=0 2.设数列xn有界 lim x-无穷 y

好难阿再答:对于任意的ε>0,取N=[1/ε]+1,则当n>N时|√(n²+1)/n-1|=|[√(n²+1)-n]/n|=|1/{n[√(n²+1)+n]}|≤1/n

lim(x->0)arctan1/x

lim(x->0)arctan1/xlim(x->0+)arctan(1/x)=π/2lim(x->0-)arctan(1/x)=-π/2∵左右极限均存在,但不相等∴lim(x->0)arctan1/

求极限lim(xy)^2/(x^2+y^2)^2,(x,y)趋于(0,0)

lim[x=y,x-->0](xy)^2/(x^2+y^2)^2=lim[x=y,x-->0]x^4/(4x^4)=1/4lim[y=2x,x-->0](xy)^2/(x^2+y^2)^2=lim[y

y=lim (x → 0) ( √1+xsinx - √cosx) / arcsin^2x.y=lim (n → ∞)

1.y=lim(x→0)(√1+xsinx-√cosx)/arcsin^2x=lim(x→0){[(sinx+cosx)/2√(1+xsinx)+sinx/2√cosx]}/[2arcsinx/√(1

lim(x→0y→1)(1+xe^y)^(2y+x/x)求极限

是不是等于1?再问:😓😓😓😰就是不懂啊,不等于再答:请参考,不一定对

lim((x-y)/(x+y))求极限.(x,y)→(0,0)

该极限不存在,从X轴,Y轴,Y=X,Y=-X逼近原点时得到的结果不同(两个就够了)

lim sin(y×x^2+y^4)/(x^2+y^2) x,y都趋于0,

令y=kx则limsin(y×x^2+y^4)/(x^2+y^2)=limsin[kx^3+(kx)^4]/[(1+k^2)*x^2]分子用等价无穷小替换=lim[k+(k^4)*x]*(x^3)/[