limfx x=0,证明级数f(1 n)绝对收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:59:08
级数(1/b)^n收敛,a>b>0,证明级数1/(a^n-b^n)收敛

俺来回答一下,马上拍照再答:

八年级数学几何证明

四个方面值得你去努力:一、扎实的基础.基础不扎实,难一点的证明题你就一点思路都没有,这就需要你对学过的知识很理解,很会应用.二、认真观察题目的图.到了八年级,证明的方法越来越多,但我们肯定要选择最适合

级数收敛证明设f(x)在x=0的某一邻域内具有二阶连续导数,x->0时,f(x)/x->0,证明级数∑f(1/n)绝对收

取a>0使得f(x)在[0,a]上有二阶连续导数,则由连续函数的有界性知存在M>0使得|f''(x)|

设f(x)在区间(0,1)可导,且导函数f`(x)有界,证明级数∑(n从2到无穷)[f(1/n)-f(1/(n+1))]

不是前面用了拉格朗日微分中值定理,就是那第一个等式.而第二个不等式则是用了连续函数的介值定理.f`(ζ)要小于f`(x)的最大值就是M.而1/n(n+1)小于1/n^2.由于1/n^2收敛.所以1/n

级数an^2收敛,证明级数an除以n收敛(an>0)

利用均值不等式可得an/n小于等于(an^2+1/(n^2))/2,而级数an^2和级数1/(n^2)均收敛,所以由比较原则,级数an/n收敛.用手机打出来的,希望你能看懂,关于级数1/(n^p)当p

用柯西准则证明级数收敛

这个级数一般不采用柯西准则,用比值判别法合适:由    lim(n→∞){[10^(n+1)]/[(n+1)!]}/(10^n/n!)=lim(n→∞)[10/(n+1)]=0根据比值判别法得知该级数

证明以下级数收敛 

这个需用Cauchy收敛准则来证明:对任意的epsilon>0,取N=[1/epsilon]+1,则对任意n>N及任意的正整数p,有   |∑(1≤k≤p)[1/(n+k)²]|  ≤∑(1

级数收敛性的证明 

是发散的,用比较判别法的极限形式.经济数学团队帮你解答.请及时评价.

证明级数收敛题! 

单调有界准则进行证明.(1-an/an+1)-(1-an+1/an+2)

an>0,{nan}有界,证明级数an收敛

可以证明a_n一定收敛到0否则,存在e,对任意N,都存在n>N,使得a_n>e这时,n*a_n>n*e>N*e而N是任意的,所以{n*a_n}就不是有界的,矛盾!故a_n一定收敛到0

证明级数收敛.

交错项级数判断敛散性,用莱布尼兹判别法:令1/√n=x显然e^x-1-x求导后可以看出它是根据x的增大而增大,由于同增异减,当n增大时,x减小,故里面也在减小,且极限为0满足莱布尼兹定理,所以原级数收

设f(x)在点x=0的某一邻域内具有二阶连续导数,且limx→0f(x)x=0,证明级数∞n=1f(1n)绝对收敛

∵f(x)在点x=0的某一邻域内具有二阶连续导数,即f(x),f'(x),f''(x)在x=0的某一邻域均连续且:limx→0f(x)x=0∴f(x)=f(0)=0limx→0f(x)?f(0)x=0

证明无穷级数,..

如图再问:多谢啦这道题看懂了非常感谢....

设级数∑f(n)^2收敛,证明∑[f(n)/n](f(n)>0)也收敛.

级数∑1/n^2与∑f(n)^2收敛所以∑[f(n)^2+1/n^2]/2收敛因为f(n)/n=根号(f(n)^2/n^2)