limfx x=0,证明级数f(1 n)绝对收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:59:08
发过去了
俺来回答一下,马上拍照再答:
四个方面值得你去努力:一、扎实的基础.基础不扎实,难一点的证明题你就一点思路都没有,这就需要你对学过的知识很理解,很会应用.二、认真观察题目的图.到了八年级,证明的方法越来越多,但我们肯定要选择最适合
取a>0使得f(x)在[0,a]上有二阶连续导数,则由连续函数的有界性知存在M>0使得|f''(x)|
不是前面用了拉格朗日微分中值定理,就是那第一个等式.而第二个不等式则是用了连续函数的介值定理.f`(ζ)要小于f`(x)的最大值就是M.而1/n(n+1)小于1/n^2.由于1/n^2收敛.所以1/n
利用均值不等式可得an/n小于等于(an^2+1/(n^2))/2,而级数an^2和级数1/(n^2)均收敛,所以由比较原则,级数an/n收敛.用手机打出来的,希望你能看懂,关于级数1/(n^p)当p
因为1/(n^2)
这个级数一般不采用柯西准则,用比值判别法合适:由 lim(n→∞){[10^(n+1)]/[(n+1)!]}/(10^n/n!)=lim(n→∞)[10/(n+1)]=0根据比值判别法得知该级数
这个需用Cauchy收敛准则来证明:对任意的epsilon>0,取N=[1/epsilon]+1,则对任意n>N及任意的正整数p,有 |∑(1≤k≤p)[1/(n+k)²]| ≤∑(1
是发散的,用比较判别法的极限形式.经济数学团队帮你解答.请及时评价.
因为n!
证明如图
单调有界准则进行证明.(1-an/an+1)-(1-an+1/an+2)
可以证明a_n一定收敛到0否则,存在e,对任意N,都存在n>N,使得a_n>e这时,n*a_n>n*e>N*e而N是任意的,所以{n*a_n}就不是有界的,矛盾!故a_n一定收敛到0
交错项级数判断敛散性,用莱布尼兹判别法:令1/√n=x显然e^x-1-x求导后可以看出它是根据x的增大而增大,由于同增异减,当n增大时,x减小,故里面也在减小,且极限为0满足莱布尼兹定理,所以原级数收
∵f(x)在点x=0的某一邻域内具有二阶连续导数,即f(x),f'(x),f''(x)在x=0的某一邻域均连续且:limx→0f(x)x=0∴f(x)=f(0)=0limx→0f(x)?f(0)x=0
如图再问:多谢啦这道题看懂了非常感谢....
级数∑1/n^2与∑f(n)^2收敛所以∑[f(n)^2+1/n^2]/2收敛因为f(n)/n=根号(f(n)^2/n^2)