limx-0((2 e^1 x) (e^4 x 1) sinx (x))是否存在
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:44:35
解 =-e/2.这题的后半部分也可用罗比达法则计算.
满意请采纳.再问:呵呵
用等价无穷小代换lim(x→0)(tan3x-3x)/ln(1+2x^2)(e^(-x)-1)=lim(x→0)(tan3x-3x)/[2x^2*(-x)]=-1/2lim(x→0)(tan3x-3x
再问:我大一新生,对泰勒公式不太熟悉,能帮忙解释下吗:再问:大神请问在书上哪部分?我自己研究再答:一般在微分中值定理的那一章再问:谢谢啦
1、lim[x-->-1](x³+1)/sin(x+1)=lim[x-->-1](x+1)(x²-x+1)/sin(x+1)=lim[x-->-1](x²-x+1)=32
令u=1/x^2,则原式=lim(u→+∞)(e^u)/u=lim(u→+∞)(e^u)=+∞这里应用了洛必达法则.再问:谢了,牛
对分子分母分别求导,再取极限.sin3x求导=3cos3x,x求导=1,当x=0,极限为3cos0/1=3同样求导,分子=e^x/(e^x+1),分母=e^x.x趋向正无穷,分子除分母=1/(e^x+
①limx→0(x+e^3x)^1/x=lim[e^ln(x+e^3x)^1/x=e^lim[ln(x+e^3x)/x]=e^lim[(1+3e^3x)/(x+e^3x)]罗比达=e^4②limx→0
这是个错题.当x趋向于0-0时,1/x->-inf,1+1/x->-inf(1+1/x)的x^2为(-inf)^0型极限,没办法求.
用泰勒公式展开e^2x,分子等价于x^2,limxsinx/(e^2x-2x-1)=limx^2/[(1+2x+(2x)^2/2+o(x^2))-2x-1]=limx^2/2x^2=1/2
分子与分母分别求导后,x→0+分子是无穷大,分母是0.所以结果还是无穷大.前面还有一个负号所以结果为负无穷大.
是无穷大(e^x-1)的Taylor展开是(1+x+1/2x^2+1/6x^3+...)所以你的极限中有1/x
设y=(x+e^x)^(1/x)则:y^x=x+e^xxlny=ln(x+e^x)lny=[ln(x+e^x)]/xlim(x->0)lny=lim(x->0)=lim(x->0)[ln(x+e^x)
再答:不懂的话还可以问我。再问:可以拆开一个一个求?再答:额,前面的只是给你解释方便你看懂,平常的话不写都可以。
令t=e^x-1,x=ln(t+1)原式=t/ln(t+1)=1/[(1/t)ln(t+1)]=1/ln(1+t)^(1/t)(t->0)=1/lne=1解法2原式=(e^x-1)/x(x->0)=(
用等价无穷小替换就行了原式=limx->0(e^x/x-1/x)=limx->0(e^x-1)/x=1
1.上下同乘e^-x2.lim(x→0)(x-arcsinx)/x^3 (0/0,洛必达法则)=lim(x→0)[1-1/√(1+x^2)]/(3x^2)(通分)=lim(x→0)[√(1+x^2)-