limx趋向于0(x的2次方sin1 x) sinx存在,但不能用洛必达法则求出
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:54:21
lim(x→1)[(3x+1/3x)^(1/x-1)]=(3+1/3)^∞=∞
原式=limx→0{[√(1+2x)-1]*x}/x^2,(arcsinx~x,tanx~x替换)=limx→0[√(1+2x)-1]/x,=limx→0[(1+2x)-1]/{x*[√(1+2x)+
lim(x→0)[√(1+tanx)-√(1+sinx)]/ln(1+x^3)=lim(x→0)[√(1+tanx)-√(1+sinx)]/(x^3)=lim(x→0)[√(1+tanx)-√(1+s
结果是e^2x^X-1=e^(xlnx)-1=xlnx好了原式=limx^(xlnx)下面罗比达法则
x趋向于0的时候,(2x-1)^5以及(2x+1)^2和(1-3x)^2都不等于0,所以直接将x=0代入计算即可,lim[x->0](2x-1)^5/((2x+1)^2(1-3x)^2)=(-1)^5
lim(x->0)[(2x-1)/(3x-1)]^(1/x)=lim(x->0){[1+(-x)/(3x-1)]^[(3x-1)/(-x)]}^[-1/(3x-1)]=e^[(-1)/(-1)]=e
下面极限下表我就省了啊,=(1+tanx)^[tanx/(xtanx)]=e^(tanx/x)=e再问:你这个是用洛必达法则做的么?有点不是很明白。再答:没有啊,这不是用罗比达法则的啊这是用我们高数数
这是个错题.当x趋向于0-0时,1/x->-inf,1+1/x->-inf(1+1/x)的x^2为(-inf)^0型极限,没办法求.
1.当x→0时,x²是无穷小,cos(1/x)是有界函数,所以lim(x→0)x^2cos(1/x)=0(无穷小乘以有界函数的极限为0)2.当x→∞时,1/x是无穷小,arctanx是有界函
0/0型用洛必达法则原式=lim(1-cosx)/(1-sec²x)还是0/0,继续用=limsinx/(2secx*secxtanx)=limsinx/(2/cos²x*sinx
x^lnx=e^(lnx*lnx)=e^((lnx)^2)x趋向于0时(lnx)^2趋向无穷大,故e^((lnx)^2)因为趋向无穷大,故limx^lnx的值为无穷大
看看,下面的解答, 有疑问,专业解答不易,请体谅.
等于1x趋向于0时,x≈sinx.同济大学出版的高数,两个重要极限中的第一个,第二个重要极限:(1+x)^1/xx趋向于0,极限也是1.口诀是内大外小内外互倒.再问:那0乘以sinx分之一不能那么算吗
再问:非常感谢能详细的解释一下吗?感觉看不大明白多谢再问:主要是第二个问题看不大明白再答:lnx=0;x-1=0;符合洛必达,可以分别分子分母求导
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
注意到lim(x趋向于0)tanx/x=1,|sin(3/x)|
应该是 lim(x→0)[cos(1/x)]^x,先计算 lim(x→0)x*ln[cos(1/x)] =lim(t→inf.)(1/t)*ln(cost)(令t=1/x) =lim(t→