limx趋向于0(x的2次方sin1 x) sinx存在,但不能用洛必达法则求出

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:54:21
limx趋向于1,求(3x+1/3x)的1/x-1次方的极限

lim(x→1)[(3x+1/3x)^(1/x-1)]=(3+1/3)^∞=∞

limx趋向于0,{【(根号下1+2x)-1】arcsinx } / tanx的2次方求极限

原式=limx→0{[√(1+2x)-1]*x}/x^2,(arcsinx~x,tanx~x替换)=limx→0[√(1+2x)-1]/x,=limx→0[(1+2x)-1]/{x*[√(1+2x)+

求极限limx趋向于0 {根号下(1+tanx)-根号下(1+sinx)}/ln(1+x的3次方)

lim(x→0)[√(1+tanx)-√(1+sinx)]/ln(1+x^3)=lim(x→0)[√(1+tanx)-√(1+sinx)]/(x^3)=lim(x→0)[√(1+tanx)-√(1+s

求极限:limx^(x^x-1),x趋向于0+

结果是e^2x^X-1=e^(xlnx)-1=xlnx好了原式=limx^(xlnx)下面罗比达法则

limx趋向于0(2x-1)^5/((2x+1)^2(1-3x)^2)

x趋向于0的时候,(2x-1)^5以及(2x+1)^2和(1-3x)^2都不等于0,所以直接将x=0代入计算即可,lim[x->0](2x-1)^5/((2x+1)^2(1-3x)^2)=(-1)^5

limx趋向0(2x-1/3x-1)的x/1次方的极限

lim(x->0)[(2x-1)/(3x-1)]^(1/x)=lim(x->0){[1+(-x)/(3x-1)]^[(3x-1)/(-x)]}^[-1/(3x-1)]=e^[(-1)/(-1)]=e

limx趋向于0 (1+tanx)^(1/x)的极限

下面极限下表我就省了啊,=(1+tanx)^[tanx/(xtanx)]=e^(tanx/x)=e再问:你这个是用洛必达法则做的么?有点不是很明白。再答:没有啊,这不是用罗比达法则的啊这是用我们高数数

limx趋向于0 求(e^2-(1+1/x)的x^2)/x 的极限

这是个错题.当x趋向于0-0时,1/x->-inf,1+1/x->-inf(1+1/x)的x^2为(-inf)^0型极限,没办法求.

用无穷小量的性质求下列极限,1,x趋向于0,limx^2cos(1/x) 2,x趋向于无穷大,lim(arctanx/x

1.当x→0时,x²是无穷小,cos(1/x)是有界函数,所以lim(x→0)x^2cos(1/x)=0(无穷小乘以有界函数的极限为0)2.当x→∞时,1/x是无穷小,arctanx是有界函

limx趋向于0 求极限x-sinx/x-tanx

0/0型用洛必达法则原式=lim(1-cosx)/(1-sec²x)还是0/0,继续用=limsinx/(2secx*secxtanx)=limsinx/(2/cos²x*sinx

求x趋向于0时,limx^lnx的值

x^lnx=e^(lnx*lnx)=e^((lnx)^2)x趋向于0时(lnx)^2趋向无穷大,故e^((lnx)^2)因为趋向无穷大,故limx^lnx的值为无穷大

高数求极限 limx趋向于3 (1-X/3)的1/x-3次方

看看,下面的解答,  有疑问,专业解答不易,请体谅.

limx/sinx.x趋向于0的极限

等于1x趋向于0时,x≈sinx.同济大学出版的高数,两个重要极限中的第一个,第二个重要极限:(1+x)^1/xx趋向于0,极限也是1.口诀是内大外小内外互倒.再问:那0乘以sinx分之一不能那么算吗

limx趋向于0 sinx/logx的极限 limx

再问:非常感谢能详细的解释一下吗?感觉看不大明白多谢再问:主要是第二个问题看不大明白再答:lnx=0;x-1=0;符合洛必达,可以分别分子分母求导

利用重要极限公式求limx趋向于0(1+x/2)^x-1/x

 若有不懂请追问,如果解决问题请点下面的“选为满意答案”.

limx趋向于0[xsin(3/x)+tanx/2x]的极限

注意到lim(x趋向于0)tanx/x=1,|sin(3/x)|

limx趋向于无穷(cos1/x)^(x)的极限

应该是   lim(x→0)[cos(1/x)]^x,先计算   lim(x→0)x*ln[cos(1/x)]  =lim(t→inf.)(1/t)*ln(cost)(令t=1/x)  =lim(t→