limx趋近于无穷(根号下n^2 1 n 1)^n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:53:22
lim1/根号n*sin (n趋近于无穷),limx^3+1/4-x^2(x趋近于2),limx^2+1/x-1/x^2

1.根号n无穷,sinn!有界所以第一题为02.连续函数的极限就是函数值,所以第二题为21/43.同第二题,直接代入x=-2就行了,答案为13/4

limx→∞ (1-1/x)^√x(当x趋近于无穷时,求1减x分之1根号x方的极限

limx→∞(1-1/x)^√x=lime^[√x*ln(1-1/x)]=lime^(-√x/x)=lime^(-1/√x)=1再问:不好意思,能不能再把步骤详细一点。。。我刚学这课,还不熟练。我只能

求极限limx趋近于0 根号下(1+sinax) -根号下(1-arctanbx )/ (x+tanx)

还有什么不懂的可以问我,数学公式太难打了.

求极限 当n趋近于无穷时 lim根号n(根号下(n+1)-根号n)

不是说不能直接等于零,而是因为由于对于∞•0型情况的极限不全为零——要看具体情况.如果你做题做多,或者学习过泰勒公式,你应该发现上面的式子的极限不应该是零先给出你提出的问题证明过程,(见附

1、用洛必达法则求limx趋近于0时 sin^4(2x)/x^3 的极限 2、limn趋于无穷(1/n^a +2/n^a

1.注意到每次上面求导之后会出一个cos2x,这个东西在x->0是极限是1,所以可以扔掉下面的过程中x->0就不写了,逐次求导lim(sin^4(2x)/x^3)=lim(8sin^3(2x)/6x^

limx趋近于无穷2x^3-x+1

极限穷大时,认为极限不存在,这里暂时表述为极限是无穷大.

lim( n趋近于无穷)[(n次根号下a+n次根号下b+n次根号下c)/3]n次方,a>0,b>0,c>0

∵lim(n->∞){n*ln[(a^(1/n)+b^(1/n)+c^(1/n))/3]}=lim(n->∞){ln[(a^(1/n)+b^(1/n)+c^(1/n))/3]/(1/n)}=lim(x

数列极限 lim(n趋近于正无穷)(根号下n²+2n)-(根号下n²-1) ..

再问:额、、从第一步到第二步咋来的?再答:分子有理化分母分子同时乘以√(n²+2n)+√(n²-1)

求lim(n趋近于正无穷)(sin根号(x+1)-sin根号(x))

【注:1=(x+1)-x=[√(x+1)+√x][√(x+1)-√x].===>√(x+1)-√x=1/[√(x+1)+√x].(1)和差化积得:sin√(x+1)-sin√x=2cos{[√(x+1

limx(e^1/x-1) x趋近于无穷

limx(e^1/x-1)x趋近于无穷结果得0

lim(x趋近于正无穷)[根号下(x^2+2x)-x]

lim(x趋近于正无穷)[(根号下x^2+2x)-x]=lim(x趋近于正无穷)[(根号下x^2+2x)-x][(根号下x^2+2x)+x]/[(根号下x^2+2x)+x]=lim(x趋近于正无穷)[

n趋近于无穷大时 (根号下n+3)-(根号下n)的极限

做个分子有理化原式=[√(n+3)-√n][√(n+3)+√n]/[√(n+3)+√n]=3/[√(n+3)+√n]因此极限为0.希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回

limx趋近于无穷时arctanx/x的极限

|arctanx|limx趋于无穷arctanx/x=0再问:没看懂。。。再答:再问:哦哦,谢谢!再问:哎呀,再问:再答:在极限和微积分中,默认k=0,不用考虑其他。再答:再问:哦哦。谢谢!再问:太详

limx趋近于1分之根号下x加2减根号3

此题可以直接代入.代入得:lim[√(x+2)-√3]x->1=lim[√(1+2)-√3]x->1=0再问:不好意思啊。。。打错了是lim(x趋近于1)x-1分之根号下x加2减根号3再答:lim{[

limx趋近于0 (根号2-根号下1+cosx)除以sinx的平方

lim(x→0)[√2-√(1+cosx)]/(sinx)^2lim(x→0)[√2-√(1+cosx)]=0lim(x→0)(sinx)^2=0=lim(x→0)[√2-√2|cos(x/2)|]/

高数极限题,limX趋近于2 2-X分之2-根号下X+2怎样解,

再问:还有一个再问:我发过来再问:limx趋近于0tan2x分之x再答:再问:你好再问:那里是5:2吗

当x趋近于正无穷时,求limx[根号(4x^2-1)-2x]的极限

原式=lim(x→+∞)x[(4x²-1)-4x²]/[√(4x²-1)+2x]【分子有理化】=lim(x→+∞)-x/[√(4x²-1)+2x]=lim(x→