lim根号(x2 x)-根号(x2-x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:55:19
lim(x趋近0+)x次根号(cos根号x)速度速度速度谢谢了

原式=lim e^(ln原式)=lim e^((ln cos根号x)/x)又lim (ln cos根号x)/x=lim (-sin根号x)/

lim(根号下x+1-根号下x)=?x->正无穷大

lim(sqrt(x+1)-sqrt(x))=lim(1/(sqrt(x+1)+sqrt(x)))明显x->无穷大时,分母-〉无穷大所以其极限为0

lim (x->0)[根号下(1+tanx)-根号下(1+sinx)]/xln(1+x)-x²

lim(√(1+tanx)-√(1+sinx))/(xln(1+x)-x^2)=lim(tanx-sinx)/(xln(1+x)-x^2)(√(1+tanx)+√(1+sinx))=(1/2)lim(

x趋于无穷大,求lim[根号下(x^2+x)]-[根号下(x^2-x)],

数学之美团为你解答lim(x→+∞)[√(x²+x)-√(x²-x)]=lim(x→+∞)[√(x²+x)-√(x²-x)][√(x²+x)+√(x&

求极限:lim(x→1)根号5x-4-根号x/x-1

lim[√(5x-4)-√x]/(x-1)(x→1)=lim[√(5x-4)-√x][√(5x-4)+√x]/{[√(5x-4)+√x]*(x-1)}(x→1)=lim(4x-4)/{[√(5x-4)

lim ln(1+e^x)/根号(1+x^2)

lim∞>ln(1+e^x)/根号(1+x^2)罗比达法则lim∞>ln(1+e^x)/根号(1+x^2)=lim∞>[e^x/(1+e^x)])/[x/√(1+x^2)]=lim∞>[√(1+x^2

lim(x→ 0)tan2x-sinx/根号(1+x)-1

原式=lim(sin2x/cos2x-sinx)/(x/2)=2lim(2sinxcosx/cos2x-sinx)/x=2limsinx/xlim(2cosx/cos2x-1)=2x趋于0时根号(1+

lim (根号x-根号a)/根号(x-a) X区域无限大 求极限

上下同除以√x原式=[1-√(a/x)]/√(1-a/x)x趋于无穷大a/x趋于0所以极限=(1-0)/√(1-0)=1

lim(x→1)(1+根号x)/(1-根号x)

分母趋于0,分子趋于2所以分式趋于无穷极限不存在再问:求更详细一点再答:就是这样采纳吧

lim(x趋向无穷)(cos1/根号x)^2x

=e^lim2x·ln(cos1/√x)=e^lim2x·ln(1+cos1/√x-1)=e^lim2x·(cos1/√x-1)=e^lim(-2x)·(1/√x)²/2=e^lim(-x)

根号x求导...根号x的导数怎样求.我:= lim [根号(x+▲x)-根号x]/▲x ▲x->0 = (根号x-根号x

首先先求这个: [根号(x+▲x)-根号x]/▲x 上下同乘:根号(x+▲x)+根号x 得:▲x/[▲x*(根号(x+▲x)+根号x)] =1/根号(x+▲x)

lim(根号X2+X-根号X2+1)

x趋近无穷?如果是无穷,答案是1/2先有理化,然后再分子分母各除以x

求lim(x->0+) x/[根号(1-cosx)]的极限,

因为1-cosx等价于x^2/2,所以lim(x->0+)x/[根号(1-cosx)]=lim(x->0+)x/√(x^2/2)=1/√1/2=√2

lim x ((根号x 平方+1)-x )求极限

X->∞吧分子分母同乘以((根号x平方+1)+x),这样分母变为((根号x平方+1)+x),分子为x再上下同除以X,即可得1/2limx((根号x平方+1)-x)=limx(√(x^2+1)+x)(√

求lim(x趋近于0)sin根号x

lim(x趋近于0)sin√xlim(x趋近于0+)sin√x=0lim(x趋近于0-)sin√x不存在所以左极限≠右极限所以lim(x趋近于0)sin√x不存在

求极限 lim/x-0 (根号x+1) -1/x

上下同乘√(x+1)+1分子平方差=x+1-1=x所以原式=x/[x[√(x+1)+1]=1/[√(x+1)+1]x趋于0所以极限=1/[√(0+1)+1]=1/2