ln(1 x)极限x趋于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:29:47
=lnlim(e^x-1)/x罗必塔法则=lnlime^x=ln1=0
lim(x->0)(lnx)ln(1+x)=lim(x->0)(ln1+x)/(1/lnx)----用洛必达法则一次=lim(x->0)1/(1+x)/[-(1/x)/(ln²x)]=lim
楼主,我认为这个极限不存在.因为lim(x>0,x→0)ln(1+x)/|x|=lim(x>0,x→0)ln(1+x)/x=lim(x>0,x→0)[1/(1+x)]/1=lim(x>0,x→0)1/
用洛必达法则是[1/(1+x)]/2x=1/(2x+2x²)但是这两个结果一样因为都是分母趋于0极限不存在
用等价无穷小代换lim(x→0)(ln(1+x^n)/ln^m(1+x))=lim(x→0)x^n/x^m=lim(x→0)x^(n-m)若n>m,则极限为0若n=m,则极限为1若n
答案:3/2当x→0,【In(1+3x)^0.5】→0,2x→0本题属于0/0型,用洛必达法则有,lim[ln(1+3x)^0.5]/2x(x→0)=lim3/(2+6x)=3/2中间省略了求导部分.
原式=lim[x+ln(1-x)]/xln(1-x)洛必达法则=lim[1-1/(1-x)]/[ln(1-x)-x/(1-x)]=-limx/[(1-x)ln(1-x)-x]继续=-lim1/[-ln
你的说法是正确的,只有两个函数的极限都存在的时候才能加减乘.这是极限的一个性质.别人的解释是这样的,一个极限存在,而另一个极限不存在.那么他们的和也不存在.这是极限的另外延伸的一个性质定理.既然不存在
对于所有求极限值的方法都是统一:非0/0型,直接代入求值即可.0/0型,分子分母求导,代入值如果任然0/0,重复.无穷/无穷.这个可以转成0/0再做对于这个题目,需要求导2次,代入0值计算结果==2一
再问:看到这道题,头脑一热,只想到拆开用等价无穷小了,都忘了有洛必达了.....再问:3q•﹏•
因为X趋向正无穷是,括号内的无限接近于一.所以ln(x/x加1)等于0再问:Ϊʲô�����ڽӽ���1��再答:����˼��ѽ��100000/100001�����һ��再问:�
ln(1+x^2)在x趋于0的时候等价于x^2,所以分母x*[ln(1+x^2)]^2等价于x^5.此时分子分母同时求导,使用洛比达法则.分子(arctanx-arcsinx)求导为___1_____
lim(x^2-ln(1+x))/e^x+1(x趋于0)0
用等价无穷小替换和洛必达法则,原式=lim(x→0)(arcsinx-x)/(2x^3)=lim(x→0)(1/√(1-x^2)-1)/(6x^2)=lim(x→0)(1-√(1-x^2))/(6x^
洛必达法则原式=(ln(1+2x))'/(x)'=(2/(1+2x))/1=2
∞/∞型用洛必达法则原式=lim[1/(1+x)-1/x]/1=lim[-1/(x²+x)]分母趋于0,所以分式趋于无穷所以极限不存在
x趋于0ln(1+x)和x是等价无穷小sinx和x也是等价无穷小所以=x/x=1
再答:不懂可以追问再问:3Q再答:没事,啦啦啦