ln(1 x平方)dx的定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 22:52:19
xdx/(1-x*x)^(1/2)=-1/2*d(1-x*x)/(1-x*x)^(1/2)再问:我也是这样算的最后是负一但答案是1
分部积分:=积分(从0到1)ln(1+x)d(1/(2-x))=ln(1+x)/(2-x)|上限1下限0-积分(从0到1)1/(2-x)*1/(1+x)dx,后面是有理函数积分能积出来了.
1,xln(1+x^2)-∫2x^2/(1+x^2)dx=xln(1+x^2)-2∫(1-1/(1+x^2))dx=xln(1+x^2)-2(x-arctanx)2,设t=√x,x=t^2,dx=2t
答案是2ln(2+√5)-√5+1,楼上算错∫(0~2)ln[x+√(x²+1)]dx={xln[x+√(x²+1)]}|(0~2)-∫(0~2)xdln[x+√(x²+
答:∫f(x)dx=(lnx)^2+C(1---e)∫xf'(x)dx=(1---e)∫xd[f(x)]=(1---e)xf(x)-∫f(x)dx分部积分=(1---e)xf(x)-(lnx)^2=[
原式=x^2/Inx(1+x^2)^2|(1→2)-∫(1→2)dx^3/Inx2(1+x^2)^2=[x^2-(x^3/2)]/Inx(1x^2)^2|(1→2)=0(由于分母总是等于0,本题考察分
你要问的是这个吧?看图
方法不唯一,但是分部积分法更简单.在看到ln,e^x,sin,cos时一般用分部积分法.
令x=tgt,原式=∫ln(tgt+1)dt,再令t=pi/4-s,tgt+1=2/(tgs+1),所以∫ln(tgt+1)=∫ln2-ln(tgt+1),现在可以解了吧?
1-sin1换元x=-t再问:还是不懂。。。。怎么办。。。。。
积分符号就不写了换元X=tant有原式=[1+(tant)*2]*1.5dtant=(cost*2)*1.5·(sect)*2dt=costdt=sint+C带入t=arctanx有原式=sinarc
运用分部积分法,如下2张图:
显然在1到e上,lnx大于0,而在1/e到1上,lnx小于0,故∫√ln²xdx=∫-lnxdx+∫lnxdx而∫lnxdx=x*lnx-x+C(C为常数)所以∫√ln²xdx=∫
当x∈(0,1)时,有ln(1-x)=-Σ1/n*x^n(n从1到+∞)故∫(0到1)lnx*ln(1-x)dx=∫(0到1)lnx*[-Σ1/n*x^n]dx(n从1到+∞)=-Σ∫(0到1)lnx
用的是定积分的定义.(ln(n)+ln(n+1)+...+ln(2n-1)-n·ln(n))/n=(ln(1)+ln(1+1/n)+...+ln(1+(n-1)/n))/n=ln(1)·1/n+ln(
这是定积分的定义∫(0->1)ln(1+x)dxdivide(0,1)intonequalintervalwithwidth1/n∫(0->1)ln(1+x)dx=lim(n->无穷)summatio