ln(x √(1 x))积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:47:17
用分部积分法求ln【x+√(x²+1)】dx

令x=tant,则原式=∫ln(tant+sect)dtant=tant*In(tant+sect)-∫tantsectd=tant*In(tant+sect)-∫dsect=tant*In(tant

求计算定积分ln(x+√(x^2+1))dx ,上限1,下限0

∫ln(x+√(1+x^2))dx=xln(x+√(1+x^2))-∫xdln(x+√(1+x^2)=xln(x+√(1+x^2)-√(1+x^2)+C∫[0,1]ln(x+√(1+x^2)dx=ln

1/(x*ln(x)*ln(x)) 从e到无穷大的积分

换元t=lnxdt=dx/x所以原式=∫(dx/x)1/(lnx)^2=∫dt/t^2=-1/t+C=-1/lnx+C代入x=无穷ln无穷=无穷1/无穷=0得0代入x=elne=1得-1一减,积分=1

求解积分∫[0,1]ln(1-x)/x dx

先将被积函数展开成幂级数,再逐项积分.ln(1-x)=x+x²/2+x³/3+x^4/4+……所以ln(1-x)/x=1+x/2+x²/3+x³/4+……逐项积

求定积分∫ln[x+√(x²+1)] dx x属于[0,2]

答案是2ln(2+√5)-√5+1,楼上算错∫(0~2)ln[x+√(x²+1)]dx={xln[x+√(x²+1)]}|(0~2)-∫(0~2)xdln[x+√(x²+

求积分ln(1+x^2)dx

原式=xln(1+x)-∫xd[ln(1+x)]dx=xln(1+x)-∫2[x/(1+x)]dx=xln(1+x)-2∫[1-1/(1+x)]dx=xln(1+x)-2x+2arctanx+C

积分ln(x+根号1+x^2)dx的不定积分

∫ln(x+√(1+x^2))dx=xln(x+√(1+x^2)-∫xd(ln(x+√(1+x^2))[ln(x+√1+x^2)]'=[1+x/√(1+x^2)]/(x+√(1+x^2))=1/√(1

求解一道积分题:∫ln²(x+√x²+1)dx

再答:用两次分部积分即可,你也认真的算一下吧,我只是提供一个参考再答:满意的话请采纳一下

求积分:∫-ln(1-x)dx

原式=∫ln(1-x)d(1-x)=(1-x)ln(1-x)-∫(1-x)dln(1-x)=(1-x)ln(1-x)-∫(1-x)*[-1/(1-x)]dx=(1-x)ln(1-x)+∫dx=(1-x

求解积分方程: ∫ ln(exp(x)+1) dx

天哪这问题太深奥了~~无能为力

定积分∫ ln(√1+x^2+x)dx

运用分部积分法,如下2张图: 

ln (1+x^2)x dx,积分等于多少啊?

原式=∫ln(x+x^3)dx=xln(x+x^3)-∫xdln(x+x^3)=xln(x+x^3)-∫x*1/(x+x^3)*(1+3x^2)dx=xln(x+x^3)-∫(1+3x^2)/(1+x

求解积分方程:∫ ln(exp(x)+1) dx

结果在图片里再问:你这个有问题~~~dx=dt/(t-1)再答:不是的e^x+1=t,方程两边求导得我那个

定积分 ∫ √ln²x dx

显然在1到e上,lnx大于0,而在1/e到1上,lnx小于0,故∫√ln²xdx=∫-lnxdx+∫lnxdx而∫lnxdx=x*lnx-x+C(C为常数)所以∫√ln²xdx=∫

反常积分∫[上限正无穷,下限1]1 / [x√(1 - ln^2 x)]dx

题有问题,按定义域知1-ln(x)^2>0-1

ln(x+1)dx^2 求积分

平方在哪里再问:在后面的x上再答:

求积分:ln(1-x)dx/x

如果是∫ln(1-x)/xdx∫ln(1-x)/xdx=∫ln(1-x)d(lnx)=-∫ln(1-x)d(ln(-x))=∫ln(1-x)d(ln(1-x))=(1/2)(ln(1-x))^2+C再

为什么1/(x+1)的积分是ln|1+x|

楼上网友 stanchcorder6 的说法,本身就是一个误导,没有那样的说法!楼主不要被误导!他的解说完全是穿凿附会、强词夺理,是概念错误!是把复变函数的概念生搬硬套到实函数上来