ln(x √(1 x))积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:47:17
令x=tant,则原式=∫ln(tant+sect)dtant=tant*In(tant+sect)-∫tantsectd=tant*In(tant+sect)-∫dsect=tant*In(tant
∫ln(x+√(1+x^2))dx=xln(x+√(1+x^2))-∫xdln(x+√(1+x^2)=xln(x+√(1+x^2)-√(1+x^2)+C∫[0,1]ln(x+√(1+x^2)dx=ln
换元t=lnxdt=dx/x所以原式=∫(dx/x)1/(lnx)^2=∫dt/t^2=-1/t+C=-1/lnx+C代入x=无穷ln无穷=无穷1/无穷=0得0代入x=elne=1得-1一减,积分=1
先将被积函数展开成幂级数,再逐项积分.ln(1-x)=x+x²/2+x³/3+x^4/4+……所以ln(1-x)/x=1+x/2+x²/3+x³/4+……逐项积
答案是2ln(2+√5)-√5+1,楼上算错∫(0~2)ln[x+√(x²+1)]dx={xln[x+√(x²+1)]}|(0~2)-∫(0~2)xdln[x+√(x²+
原式=xln(1+x)-∫xd[ln(1+x)]dx=xln(1+x)-∫2[x/(1+x)]dx=xln(1+x)-2∫[1-1/(1+x)]dx=xln(1+x)-2x+2arctanx+C
∫ln(x+√(1+x^2))dx=xln(x+√(1+x^2)-∫xd(ln(x+√(1+x^2))[ln(x+√1+x^2)]'=[1+x/√(1+x^2)]/(x+√(1+x^2))=1/√(1
再答:用两次分部积分即可,你也认真的算一下吧,我只是提供一个参考再答:满意的话请采纳一下
原式=∫ln(1-x)d(1-x)=(1-x)ln(1-x)-∫(1-x)dln(1-x)=(1-x)ln(1-x)-∫(1-x)*[-1/(1-x)]dx=(1-x)ln(1-x)+∫dx=(1-x
天哪这问题太深奥了~~无能为力
运用分部积分法,如下2张图:
原式=∫ln(x+x^3)dx=xln(x+x^3)-∫xdln(x+x^3)=xln(x+x^3)-∫x*1/(x+x^3)*(1+3x^2)dx=xln(x+x^3)-∫(1+3x^2)/(1+x
结果在图片里再问:你这个有问题~~~dx=dt/(t-1)再答:不是的e^x+1=t,方程两边求导得我那个
显然在1到e上,lnx大于0,而在1/e到1上,lnx小于0,故∫√ln²xdx=∫-lnxdx+∫lnxdx而∫lnxdx=x*lnx-x+C(C为常数)所以∫√ln²xdx=∫
题有问题,按定义域知1-ln(x)^2>0-1
平方在哪里再问:在后面的x上再答:
如果是∫ln(1-x)/xdx∫ln(1-x)/xdx=∫ln(1-x)d(lnx)=-∫ln(1-x)d(ln(-x))=∫ln(1-x)d(ln(1-x))=(1/2)(ln(1-x))^2+C再
楼上网友 stanchcorder6 的说法,本身就是一个误导,没有那样的说法!楼主不要被误导!他的解说完全是穿凿附会、强词夺理,是概念错误!是把复变函数的概念生搬硬套到实函数上来