lntanx的导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:34:57
导数由速度问题和切线问题抽象出来的数学概念.又称变化率.如一辆汽车在10小时内走了600千米,它的平均速度是60千米/小时,但在实际行驶过程中,是有快慢变化的,不都是60千米/小时.为了较好地反映汽车
y=x^lnxlny=(lnx)²y'/y=2lnx*1/xy'=2x^lnx*(lnx)/x
解题思路:利用导数的性质解答。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/re
你可以先把图片保存下来,再打开,旋转再放大,不然可能看不清楚
解题思路:导数解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.php?
解题思路:先根据已知条件求出函数f(x)的解析式,再求出g(x)解析式,用导数的几何意义。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("htt
(tanx)'=1/cos²x=sec²x=1+tan²x
f'(1+0)=lim[f(1+△x)-f(1)]/△x;(△x>0;△x→0)=1f'(1-0)=lim[f(1+△x)-f(1)]/△x;(△x
证明:y'=a/x∴过P的切线方程为Y-Yo=a/Xo×(X-Xo)将(0,-1)代入,得-1-Yo=a/Xo×(-Xo)=-a即a=1+Yo=1+(alnXo-1)=alnXo又∵a≠0,∴lnXo
临界点导数用定义求.f(x)'=limx趋于0[x/1+e^1/x-f(0)]/(x-0)=lim1/(1+e^1/x),右导数,x趋于0+,分母趋于无穷大,整个趋于0;左导数,x趋于0-,分母趋于1
解题思路:利用导数的符号来判断单调性解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include
dy/dx=1/√(1+x^2)+sec^2x/tanx再问:过程可以列举下吗?再答:一步就出来了啊,最基本的求导。dy/dx=1/√(1-x^2)+sec^2x/tanx
arcsinx+x/√(1-x^2)+1/(sinxcosx)再问:可以写出步骤吗?谢谢!再答:dy/dx=(x)'arcsinx+x(arcsinx)'+1/tanx*(tanx)'=arcsinx
数学意义求两次导=0的点是拐点0函数图象下凸物理意义举个例子吧,位移的导数是速度,速度的导数是加速度
解题思路:利用极值点处的导数为0得一个等式,利用方向向量与直线斜率的关系得第二个等式,联立解方程。解题过程:见附件。有问题欢迎再讨论,祝你进步。最终答案:略
设函数y=f(x)在点x0的某个邻域N(x0,δ)内有定义,当自变量x在x0处有增量△x(设x0+△x∈N(x0,δ)),函数y=f(x)相应的增量为△y=f(x0+△x)-f(x0). 如果当△x
方法一:∫1/(sinxcosx)dx=∫2/sin2xdx=∫csc2xd(2x)=ln|csc2x-cot2x|+C方法二:∫1/(sinxcosx)dx分子分母同除以cos²x=∫se
几何意义上的理导数只是在二维平面上一条曲线上某点的斜率.偏导数是在三维空间内有一张曲面f,垂直于Y轴切曲面一刀可以得到刀具与曲面间的一条曲线,对这条曲线某一点求斜率就是传说中的偏f/偏x;同理垂直于x
y=lntanxdy/dx=d(lntanx)/d(tanx)*d(tanx)/dx=1/tanx*sec²x=2csc(2x)d²y/dx²=2*dcsc(2x)/d(
因为d(lntanx)=1/tanx*sec^2(x)dx=dx/(sinxcosx)所以原式=∫lntanxd(lntanx)=(lntanx)^2/2+C