log5[log4(log3 81)]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:25:55
已知log4(27)=a,log5(2)=b,求lg2及lg3

log4(27)=3/2log2(3)=a,既log2(3)=2a/3.既lg2/lg3=2a/3,log5(2)=log2(2)/log2(5)=1/[-1+1+log2(5)]=1/[-1+log

2007*log5(1)+log4(27)*log3(4)

/>2007*log5(1)+log4(27)*log3(4)=2007*0+(lg27/lg4)*(lg3/lg4)=lg27/lg3=lg3³/lg3=3lg3/lg3=3

log 2 3 * log3 4 * log4 5 *log5 2 化简

换成以10为底的对数,lg3/lg2*lg4/lg3*lg5/lg4*lg2/lg5=1

解方程log5(3x+4x)=log4(5x-3x)

好复杂哟,不过小可有方法设log5(3x+4x)=log4(5x-3x)=a则有5^a=7x,4^a=2x两式相除可得1.25^a=3.5a=log1.25(3.5)你可用计算器算出a的值,代入方程5

求值(log2 5+log4 1/5)(log5 2+log25 1/2)

(log25+log41/5)(log52+log251/2)=(log25-log45)(log52-log252)=(lg5/lg2-lg5/lg4)(lg2/lg5-lg2/lg25)=1/2l

运用对数换底公式化简log2(3)*log3(4)*log4(5)*log5(2),

log2(3)*log3(4)*log4(5)*log5(2)=log2(3)*log3(2^2)*log2^2(5)*log5(2)=log2(3)*2log3(2)*1/2*log2(5)*log

帮忙换底化简下列:logaC*logcA .log2 3 * log3 4 * log4 5 * log5 2

1、logaC×logcA=logaC×(1/logaC)=12、log23×log34×log45×log52=[1/(log32)]×2log32×[1/(log54)]×log52=2×[1/2

log4^25-2log4^10+log2^9×log3^根号5×log5^2

原式=lg25/lg4-2lg10/lg4+lg9/lg2×lg√5/lg3×lg2/lg5=(2lg5)/(2lg2)-2/(2lg2)+(2lg3)/lg2×(½lg5)/lg3×lg2

log5^4与log4^5与(log5^3)^2这三个数怎么比较大小,

log5^41所以log4^5>log5^4log5^3再问:是不是打太快了?log5^41是什么?我想知道详细点的再答:哪里有log5^41首先只有log4^5>1所以log4^5最大无悬念然后1>

比较P=log4(5) Q=log5(4) R=log4(log5[4])的大小

log4(x)和log5(x)都是增函数所以P>log4(4)=11

如果log3〔log4(log5^a)〕=log4〔log3(log5^b)〕=0,则a/b的值为?

log5^a这个的意思应该是以5为底的loga吧……应该不是5的a次方吧~要不就没有底数了……〔log4(log5^a)〕=〔log3(log5^b)〕=1log5^a=4,log5^b=3,上面两个

log4(log5 a)=log3(log5 b)=1,求a/b.

log4(log5a)=1log5a=4a=5^4=625同理,b=5^3所以a/b=5

log5{log4(log3x)}=0,则x=?

log5{log4(log3x)}=0,{log4(log3x)}=1(log3x)=4x=81

比较log4 \8 log5\ 10的大小

log4\8=log4(2*4)=log4\2+1log5\10=log5(2*5)=log5\2+1log4\2>log5\2所以log4\8>log5\10

a=log5(4),b=[log5(3)]²,c=log4(5),比较abc的大小

∵y=log5(x)是增函数,y=log5(5)=1.∴0

1.log2 3*log3 4*log4 5*log5 2 2.(log4 3+log8 3)8(log3 2+log9

1、log23*log34*log45*log52=lg2/lg3xlg3/lg4xlg4/lg5xlg5/lg2(换底公式)=1(约分)2.(log43+log83)*(log32+log92)中间

log5[log4(log3 81)]=0

求值log5[log4(log3x)]=0解方程log4(log3x)=5^0=1log₃x=4¹=4x=3⁴=81证明:log5[log4(log381)]log5

log3(4)*log4(5)*log5(6)*...*log80(81)

2^[log2(3)*log3(4)*log4(5)*log5(6)*log6(7)*log7(8)]=(2^log2(3))*log3(4)*log4(5)*log5(6)*log6(7)*log7