给两个命题,p:对任意实数x都有x的平方 ax 1>0恒成立

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:52:19
已知命题p:方程(2x-a)(x+a)=0的两个根都在[-1,1]上;命题q:对任意实数x,不等式x2+2ax+2a≥0

由(2x-a)(x+a)=0得x=a2或x=-a,∴当命题p为真命题时,−1≤a2≤1且-1≤-a≤1,解得-2≤a≤2且-1≤-a≤1,∴-1≤a≤1,即p:-1≤-a≤1.又当命题q为真命题时,“

给定两个命题,P:关于x的方程x2-x+a=0有实数根; Q:对任意实数x都有ax2+ax+1>0(a≠0)恒

关于x的方程x2-x+a=0有实数根⇔1−4a≥0⇔a≤14;…(2分)对任意实数x都有ax2+ax+1>0恒成立⇔a=0或a>0△<0⇔0≤a<4…(5分)如果P正确,且Q不正确,有0≤a<4,且a

1、已知命题p:"x1和x2是方程x平方-mx-2=0的两个实根,不等式a平方-5a-3>=|x1-x2|对任意实数m属

因为x^2-mx-2=0有两个实根,故判别式为m^2+8恒大于零,此时,|x1-x2|=根号下的判别式=根号下(m^2+8).又m属于-1到1,所以,根号下(m^2+8)属于2根号2到3.若:不等式a

命题p:对任意实数x都有按ax平方+ax+1大于0恒成立;命题p:关于x的方程x平方-x+a等于0有实数根;若p或q为真

若p或q为真命题,p且q为假命题则P和q中有且仅有一个是真命题.1.如果P真Q假则对任意实数x都有按ax平方+ax+1大于0恒成立——a大于4关于x的方程x平方-x+a等于0有实数根——a大于1/4则

给定两个命题,P:对任意实数x都有ax平房+ax+1恒成立,Q关于x的方程x平方-x+a有实数根,如果PVQ为真命题

给定两个命题,P:对任意实数x都有ax平房+ax+1恒成立,Q关于x的方程x平方-x+a有实数根,如果PVQ为真命题解析:命题P:对任意实数x都有ax^2+ax+1恒成立T:a^2-4a0a1/4∵P

给定两个命题,p:对任意实数x都有ax^2+ax^2+1>0恒成立;q:关于x的方程x^2-x+a=0有实数根.如果pV

p命题肯定打错了;对于这种命题,应该想到判别式一定小于0,对吧?关于q,判别式大于等于0.然后可以看到p或者q有且仅有一个为假命题(你又打错了),然后就可以分情况讨论了:1.q为假;2.q为真.画数轴

已知命题P:x1和x的平方-mx-2=0的两个实根,不等式a的平方-5a-3大于等于[x1-x2]对任意实数m?[-1,

x1+x2=m,x1*x2=-2|x1-x2|=√[(x1+x2)^2-4x1x2]=√(m^2+8)f(m)在m∈[-1,1]的最大值=√9=3a^2-5a-3≥3(a+1)(a-6)≥0a≥6或a

已知命题p:对任意的k∈R,直线l:y-1=k(x-1)和圆x^2+y^2-2y=0都有两个公共点;命题q:“m=-3”

因为直线l必过(1,1),而(1,1)又在圆上.若直线l与圆只有这一个交点的话,那么此时l与圆相切,就垂直于x轴了,此时不存在斜率,这与k∈R是矛盾的,所以不能相切,也就是相交嘛,所以都有两个交点;是

已知命题p:对任意实数x有2x^2-x+a>0恒成立,q:存在一个x有:x ^2+2ax+a=0;若命题p或q为真命题,

若命题p或q为真命题,求实数a的范围,可以先求命题p和q都为假时a的范围,然后除了这个范围以外的,就是命题p或q为真命题时a的范围.p:1-8a1/8,q:4a^2-4a>=0,a==1p为假时,a=

已知 p:对任意实数x,都有ax^2+zx+a大于0恒成立;q:5a-6大于等于a^2,若p且q是假命题,p或q是真命题

先看q:可知a大于等于2小于等于3.再看p:当a在q所在的区间里,根据双曲线可值p为假.故得已知条件同理:便得.时间匆忙,就没写的很详细了.见谅

给定两个命题p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2-x+a=0有负实数根;如果p或q为真命

对于命题p:当a=0,不等式ax2+ax+1>0变为1>0,对任意实数x恒成立;当a≠0时,对任意实数x都有ax2+ax+1>0恒成立,必需a>0△=a2−4a<0,解得0<a<4;对于命题q:关于x

命题p:对任意实数x都有x2+ax+a大于0恒成立,命题q:关于x的方程x2+ax+1=0

命题p:对任意实数x都有x2+ax+a大于0恒成立,命题q:关于x的方程x2+ax+1=0有两个不等的负根,若pvq为真命题,求实数a的取值范围.若pvq为真命题则说明,P真或q真或pq同时为真p真:

“对任意实数X,X>0”命题的否定

存在x,使x小于或等于零

命题“对任意的实数x都有:x2+ax+2>0”的否命题和命题的否定是什么呢?

否命题把都有该为不都有,否定把小于改大于等于

给定2个命题P,对任意实数x都有ax的平方+ax+1>0恒成立,q,关于x的方程x的平方-x+a=0有实数根

若x的方程x的平方-x+a=0,得1²-4×1×a>=0得a0,b²-4ac0命题P成立当a=0,命题P成立当a

已知命题p:对任意实数x,都有x平方-4x+4大于等于0,写出命题P的非,并判断真假

非p:存在实数x,使得x的平方-4x+4小于0,假命题,因为x的平方-4x+4可利用完全平方公式配成(x-2)的平方,我们知道,实数的平方不可能小于0,所以是假命题