若f服从正态分布,那么对f求定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:24:19
在X与Y相互独立的条件下才可以说X-2Y也服从正态分布.其参数为(独立条件下)均值E(X-2Y)=EX-2EY=0方差D(X-2Y)=DX+4DY=10,即X-2Y服从N(0,10)
随机变量X的概率密度函数为:{[1/sqrt(2pi)δ]}*exp[-(x-u)^2/(2*δ^2)]被称之为标准正态分布.
套公式即可.σ1^2=DX=16,σ2^2=DY=25.ρ=Cov(X,Y)/(σ1σ2)=0.6,√(1-ρ^2)=0.8.f(x,y)=(1/32π)e^{(-25/32)[x^2/16-3xy/
终于见到考研的题了,做初高中的做的我郁闷,你等等我算算哈相关系数为0,所以xy相互独立,边缘密度分别为N(0,1)标准正态,然后E(x^2)+E(y^2)=EX+DX+DY+EY=2再问:期待您的高见
Y=(X-μ)/σ,则Y服从标准正态分布.
F分布是基于正态分布建立起来的区别:正态分布是对称的;f分布是一种非对称分布
∵函数f(x)=x2+2x+ξ不存在零点,∴△=4-4ξ<0,∴ξ>1∵随机变量ξ服从正态分布N(1,σ2),∴曲线关于直线x=1对称∴P(ξ>1)=12故选C.
X的概率密度g(x)=∫[-∞,+∞]f(x,y)dy=1/(5√2π)*e^(-x^2/50).Y的概率密度h(y)=∫[-∞,+∞]f(x,y)dx=1/(5√2π)*e^(-y^2/50).f(
回答:根据对称性,P{XY},且P{XY}=1.故P{X
设p(x)为X的密度函数,则p(x)以直线x=μ对称,即p(μ+x)=p(μ-x),F'(x)=p(x).F(μ)=积分(-无穷,μ)p(x)dx=1/2.设G(x)=F(μ+x)+F(μ-x),则G
F(x)是分布函数,写成含f(x)的积分形式再积分的话应该是算二重积分吧.木有见过对分布函数积分的说再问:就是对分布函数求积分,看有没有什么方法能够求出来的。再答:那就是按照二重积分做
1.独立的正态分布的联合分布也服从正态分布.2.没关系.3.去掉独立后,结论不成立.4.由分布密度来判断是否是二维正态分布.
这个题有点技术含量印象中先要分部积分化简.楼下的接着做.
F'(x)=1/根号(2pi)*e^[-(x-μ)^2/(2σ^2)]F''(x)=-1/根号(2pi)*e^[-(x-μ)^2/(2σ^2)]*(x-μ)/σ^2)令:F''(x)=0,得:x=μ.
∵函数f(x)=13x3+x2+η2x没有极值点,∴f′(x)=x2+2x+η2=0无解,∴△=4-4η2<0,∴η<-1或η>1,∵随机变量η服从正态分布N(1,σ2),P(η<-1)=0.2,∴P
正态分布具有对称性,F(-a)=1-F(a),选A
1、x1、x2是否相互独立,与你得出的Δ=X1-X2无关.只与你使用环境有关,与你建模时假设有关,也就是实际情况.2、如果相互独立,标准正态分布的函数也是标正分布,期望与方差根据公式可求的.如果不独立