若n阶方阵a满足a2-a e=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:48:15
由A^2=A知道A的特征值只能是1和0若|A+E|=0,则-1是其特征值,这不可能所以|A+E|≠0,即可逆
证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^
由题:A^2-3A=0(这里的0,表示n阶0矩阵,以下同)得到:A(A-3E)=0由于A≠0,因此A-3E=0,0矩阵不可逆,从而A-3E不可逆!
因为 R(AB)=0所以 AB=0所以 R(A)+R(B)<=n.(C) 正确 搞定请采纳...
因为|A|=0,存在可逆矩阵B使,AB=0,令B=(a1,a2,...,an),则Aa1,...Aan线性无关
反证法若A是可逆矩阵,则A×A逆=EA=A×A×A逆=A×A逆=E矛盾
1.你的A2=0,是不是A的平方的意思,即A^2,假如是这样:分析:A^2=A*A=0两边取行列式:|A^2|=|A*A|=|A|*|A|=0得:|A|=0一个矩阵的行列式=0,不一定有这个矩阵是0矩
做法是这样的:A^2+2A=3E再因式分解A*(A+2E)/3=E所以A的逆矩阵是(A+2E)/3
A2+A-7E=0,(A+3E)(A-2E)=E所以由书上推论,得A+3E可逆,且A+3E的逆矩阵(A+3E)^(-1)=A-2E.
A²-5A+6E=E(A-2E)(A-3E)=E所以A-2E可逆其逆矩阵为A-3E再问:(A-2E)(A-3E)=A²-5AE+6E^2。不等于A²-5A+6E=E再答:
A2-5A+5E=A2-5A+6E-E=(A-2E)(A-3E)-E=O(A-2E)(A-3E)=E矩阵A-2E可逆,其逆矩阵=A-3E
证:由A2-3A-3E=0,得(A-E)(A-2E)=5E(A-E)[(A-2E)/5]=E由定义,得(A-E)可逆,且(A-E)-1=(A-2E)/5再问:再答:就是这个题目啊。再问:哦哦,谢谢
AB=0左右取行列式得|A||B|=0所以|A|=0或|B|=0
要是取巧,你想A=0是可能的,但也不是唯一的解,所以四个答案只有D正确要是正常解题,因为r(A)+r(B)-n
(结论应该是r(A)=.不然取A=0直接得到矛盾)考虑两个线性空间:(1)A的列空间,即A的各列向量张成的线性空间.它的维数即是A的列秩,等于A的秩,即r(A).(2)Ax=0的解空间,即Ax=0的所
由A^2-A-7E=0得:A(A-1)=7E故A(A-1)的行列式为7而不为0,假如A是不可逆矩阵,则A的行列式为0那么A(A-1)的行列式就为0矛盾,所以A可逆又原式可变为(A+2E)(A-3E)=
a^TAa是一个数,则a^TAa=[a^TAa]^T=a^tA^Ta=-a^TAa,2aTAa=0,得a^TAa=0.
A*(A-2E)/(-3)=E,故A的逆为-1/3*(A-2E)
选D利用Sylvester不等式rank(A)+rank(B)