若数列an满足a1等于1,an

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 21:40:12
若数列{An}满足A1=1,A(n+1)=An/(2An + 1)

1)1/3,1/52)倒数变换一下即可证明从该步骤得到an=1/(2n-1)3)T=(1/1*1/3+1/3*1/5+1/5*1/7+……+[1/(2n-3)][1/(2n-1)]=1/2(1-1/3

已知数列an满足a1=4 an=4-4/an-1(n大于等于2) 求证bn是等差数列 求数列an的通项公式

an=4-4/a(n-1)an-2=2-4/a(n-1)=2{[a(n-1)-2]/a(n-1)}于是有1/(an-2)=1/2+1/[a(n-1)-2]所以有bn=1/2+b(n-1)即bn-b(n

若数列an满足a1=1,且an+1=an/1+an.证明:数列1/an为等差数列,并求出数列an的通项公

a1=1,a(n+1)=an/(an+1),取倒数得:1/a(n+1)=(an+1)/(an).即1/a(n+1)=1/an+1,所以{1/an}是首项为1,公差为1的等差数列,1/an=1+(n-1

已知数列{an}满足a1=2,an+1-an+1=0(n∈N+),则此数列的通项an等于(  )

由题意可得,an+1-an=-1,此等差数列是以2为首项,以-1为公差的等差数列,则此数列的通项an=2+(n-1)d=3-n,故选D.

若数列{An},满足关系a1=2,an+1=3an+2,求数列的通项公式

an+1=3an+2,a(n+1)+1=3an+3=3(an+1)数列{an+1}成等比数列q=3an+1=(a1+1)*3^(n-1)=3*3^(n-1)=3^nan=(3^n)-1

已知数列{an}满足a1=2,an+1-an=an+1*an,那么a31等于

两边同除an*an+1得:1/an-1/an+1=11/an+1-1/an=-1,所以数列{1/an}为等差数列1/an=1/a1+(-1)*(n-1)1/a31=1/2+(-1)*301/a31=-

数列{an}满足a1=2,an+1=−1an+1,则a2010等于(  )

∵a1=2,∴a2=−12+1=-13,a3=−32,a4=2,依此类推,数列是周期为3的数列,∴a2010=a3=−32,故选C

【高考】若数列{an}满足,a1=1,且a(n+1)=an/1+an,证明,数列{1/an}为等差数列,并求出数列{an

a(n+1)=an/1+ana(n+1)(1+an)=ana(n+1)+a(n+1)an=an两边除a(n+1)an1/an+1=1/a(n+1)1/a(n+1)-1/an=1所以数列{1/an}为等

若数列{An}满足An+1=An^2,则称数列{An}为“平方递推数列”,已知数列{an}中,a1=9,点(an,an+

x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10

若数列{AN}满足A1=0.5,AN=1-1/(AN-1),N大于等于2,则A2009+A2010等于几

a1=1/2所以a2=1-2=-1a3=1+1=2a4=1-1/2=1/2=a1所以三个一循环2009÷3余数2所以a2009=a2a2010=a3所以原式=-1+2=1

已知数列an满足a1=2,an=3an-1(n大于等于2)则数列an通项公式

a1=2,an=3a(n-1)(n大于等于2)∴an/a(n-1)=3那么{an}为等比数列,公比q为3∴an=a1*q^(n-1)an=2*3^(n-1)

已知数列{an}中,a1=1,满足an+1=an+2n,n属于N*,则an等于

应该是A(n+1)=An+2n吧~~~=>a(n+1)-an=2n所以an-a(n-1)=2(n-1)a(n-1)-a(n-2)=2(n-2)...a2-a1=2*1把左边加起来,右边加起来得到an-

已知数列{an}满足a1=2,an+1=2an/an+2,则an等于多少

a(n+1)=2a(n)/[a(n)+2],a(1)=2>0,由归纳法知a(n)>0.1/a(n+1)=[a(n)+2]/[2a(n)]=1/2+1/a(n),{1/a(n)}是首项为1/a(1)=1

已知数列{an}满足条件:a1=5,an=a1+a2+...a(n-1) n大于等于2,求数列{an}的通项公式

据题意:5+(n-1)*d=5*(n-1)+(1+2+···n-2)*d5+(n-1)*d=5n-5+{[(n-2)(n-1)]/2}*d5+n*d-d=5n-5+[(n^2)/2]*d-(3n/2)

若数列{an}满足a(n加1)的平方减an的平方等于d,其中d为常数已知等方差数列{an}满足an>0、a1=1、a5=

(1)a2方-a1方=d,a3方-a2方=d,a4方-a3方=d,a5方-a4方=d.四式相加得a5方-a1方=4d,代入a1=1,a5=3,可求得d=2.另:把上述四式扩展到n式,可得an方-a1方

已知数列{an}满足an+1=an+n,a1等于1,则an=?

A2=A1+1A3=A2+2A4=A3+3.An=A(n-1)+(N-1)左式上下相加=右式上下相加An=A1+[1+2+3+...+(N-1)]An=1+[N(N-1)]/2