若数列Xn收敛Yn发散则Xn Yn如何XnYn又如何
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 23:36:09
发散数列,单独的(n+1)/n是收敛数列,可是乘以-1之后,就不收敛了.故发散
先证xn收敛yn0,当n>N时|xn-yn-2|
这样的证明,只要举出反例来就可以了如:xn=(-1)^nyn=(-1)^n两个数列都是发散的但xnyn=1就是收敛的
(3X(n-1),3Xn)min=|f(x)/sinx|=|求和bk|我期待正确解答,题目很好啊!
(a+b)/2>=(ab)^1/2Yn+1=(Xn*Yn)^1/2小于=(Xn+Yn)/2=Xn+1Xn+1-Xn=(Yn-Xn)/2小于0所以Xn单调减少xn小于a大于0Yn+1/Yn=(Xn/Yn
收敛convergence与某个实数a无限接近的数列{an},即当时,就说数列{an}是收敛的,否则就说{an}为发散数列.例如,{}是收敛数列,因为当n无限增大时,与实数0无限接近,也即.{}也是收
无法判断.xn=1/2^m,yn=2^nxn*yn=2^(n-m)n>=m,发散n
Xn和Yn都收敛a.证明:lim(n→∞)|Xn-a|
不正确,如xn=1/n为有界yn=1
不一定例如设函数f(x)满足x>=0f(x)=1x再问:f(xn)是数列-1,-1,-1....吧再答:哦xn应该是(-1)^n*1/n也就是-1,1/2,-1/3,1/4....
不能确定.举个实例,令Xn=常数-1,Zn=常数1,若Yn=sin(n),则Yn的极限就不存在.因为它不能确定于一个定值.
数列收敛,这个你能理解吗?就是随着n无限增大,Xn最后趋近于一个数字让我们假设这个数字是A吧前面这是条件后面的结果就是,极限必定唯一,就说,这个A独一无二的了没有其他数字了,Xn不能再同时趋向于另一个
收敛..当n趋向很大是,xn趋向于0证明:对任意给定的e,取N=1/e,当n>N时|xn-0|
发散数列.当n=2k时,趋于-1当n=2k+1时,趋于1所以发散.再问:当n=2k+1时xn=0啊再答:设主要用来决定=[(-1)^(n+1)的符号如果是1+(-1)^n那么:当n=2k时,趋于2当n
{xn+yn}、{xn-yn}发散{xn*yn}可能收敛,可能发散.
因为{xn}收敛于a,所以任给ε>0,存在正整数N,当n>N时,|xn-a|
A收敛于a但c那样做不正确.再问:C哪儿不正确麻烦请详明再答:因为yn的极限还不知道是否存在所以这儿不能拆开来运算。
因为Xn收敛于a,即当n—>无穷大时,|Xn-a|-->0或lim|Xn-a|=0由于lim|Xn-a|=lim||Xn|-|a||=0所以|Xn|收敛于|a|反之不成立,1楼已经举例说明了.用逻辑的
可能收敛,也可能发散.收敛的例子,xn=0,无论yn啥样,xnyn都收敛发散的例子,xn=1/n,yn=n^2再问:谢谢O(∩_∩)O再问:谢谢O(∩_∩)O
不妨设Xn为单增数列,设{Xk}为{Xn}的收敛子列,且{Xk}极限为a,则a为{Xk}的上界下证a为{Xn}的上界任取Xn0,存在Xk0,使Xk0在数列{Xk}中,且k0>n0由于a为{Xk}的上界