若直线y=x 2与曲线y=根号下m-x2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:42:41
数形结合:y=根号下(4-x²)是圆心在原点半径为2的x轴上方的半圆.最上边的直线在x=-2cos45°=-√2处与圆相切,直线过点(-√2,√2),√2=-√2+m,m=2√2最下边的直线
曲线x-b=√(1-y²),就是:(x-b)²+y²=1,其中x≥b【表示的是圆(x-b)²+y²=1的右半圆】结合图像,得:-1
首先画图,曲线为单位圆的右半边,并且包括点(0,1)和(0,-1),那么从上往下移为(-1,1],下面有一个相切的点,圆心到直线的距离是1,则K=根号2,综上所述,K的范围是(-1,1]U{-根号2}
曲线为原点为圆心,半径为1的上半圆.当直线过圆在x轴的右端点(1,0),b取最小值此时b=-1当直线与上半圆相切时,b取最大值有|b|/√2=1∴b=√2∴b的取值范围是[-1,√2]
把y=k(x+1)代入曲线方程得,k(x+1)=√(2x-x²)两边平方,并化简,得,(k²+1)x²+2(k²-1)x+k²=0Δ=[2(k&sup
这个利用数形结合x=√(1-y²)平方y²+x²=1(x≥0)表示圆心在原点,半径为1的圆在y轴右边的部分(包含与y轴的交点)y=x+b表示斜率为1的直线利用图像-1≤
直线:kx-y-2k=0曲线y=√(1-x²),化成x²+y²=1,y≥0,(就是圆在x轴上面的部分,包括x轴.)①当直线于半圆相切时,斜率最小此时圆心(原点)到直线距离
说明:曲线“y=3-根号下4x-x的平方”不是一个正圆圆,而是一个口朝上的半圆,是一个扇角为180度的一个扇形弧线,即圆在直线y=3以下的部分扇形半圆弧.当直线y=x+b与圆下切时,你做对了,此时b=
k<-(根号5)/2,如果结果不对那就是我计算出现了失误,不过这个解题方法很不错的,希望对你有所帮助
直线:kx-y-2k=0曲线y=√(1-x²),化成x²+y²=1,y≥0,(就是圆在x轴上面的部分,包括x轴.)①当直线于半圆相切时,斜率最小此时圆心(原点)到直线距离
曲线是个位于y轴右侧的半圆,已知直线是斜率为1的直线,移动这直线就可以发现结论了.你试试.
把直线解析式带入曲线解析式,平方整理取踏大于零,就可以算出了
根据题意有x+b=3-(4x-x^2)^0.5整理得2x^2+2(b-5)x+(b-3)^2=0根据韦达定理有[2(b-5)]^2>=4*2*(b-3)^2b^2-2b-7
曲线C1:y=x2,则y′=2x,曲线C2:y=x3,则y′=3x2,直线l与曲线C1的切点坐标为(a,b),则切线方程为y=2ax-a2,直线l与曲线C2的切点坐标为(m,n),则切线方程为y=3m
如果你没有学导数:设所求直线为y=a(x+1),曲线y=根号x单调递增,其切线必然与该曲线只有切点这一个交点.也就是说联立两方程只有唯一解,联立得到(ax)^2+(2a^2-1)x+a^2=0,该方程
用树形结合的思想y=√(1-x²)的图像是x轴上方的一个半圆当直线y=x+b通过(1,0)点时,b的值最小,此时b=-1当直线y=x+b与半圆相切时(切点在第三象限,切点坐标为(-√2/2,
∵y=x+b与y=√(4-x²)有公共点且4-x²≥0∴-2≤x≤2∴x+b=√(4-x²)——>(x+b)²=4-x²——>2x²+2bx
对曲线Y=3-根号下4X-X^2进行变形:y=3-√(4x-x^2)=3-√[4-(x-2)^2]显然,由于根号内大于等于0,且小于等于4,故y的取值在1和3之间有:(y-3)^2+(x-2)^2=4
两个方程联立求k(x-2)=√(1-x^2),化简下来得:(k²+1)x²-2k²x+4k²-1=0,要有解,必须使得△>=0,下面的步骤自己解吧!