若矩阵AB=0 证明A B的秩小于等于n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:55:40
证明:如果AB=0,那么B的每个列都是齐次方程组AX=0的解设r(A)=r,那么方程组AX=0最多有n-r个线性无关的解所以r(B)
定理:如果AB=0,则秩(A)+秩(B)≤n.证明:将矩阵B的列向量记为Bi.∵AB=0,所∴ABi=0,∴Bi为Ax=0的解.∵Ax=0的基础解系含有n-秩(A)个线性无关的解,∴秩(B)≤n-秩(
依题意r(A)=r
证明:由AB=0得r(A)+r(B)=1所以r(A)
(1)因为AB=0所以B的列向量都是齐次线性方程组Ax=0的解所以r(B)
因为A是m*n矩阵,则r(A)
由于秩相等,所以值域维数相等.又由于值域有包含关系,所以值域就一样了.再问:我知道A的值域一定包含AB的值域,请问如何证AB的值域包含A的值域?再答:由于秩相等啊,这样值域的维数都等于秩。包含关系+维
还带有提示.\x0d请看图片:\x0d\x0d\x0d满意请采纳^_^.
因为AB=0r(A)+r(B)=1r(A)
可以用方程组的解法,AB=0.B为方程组解,则解的个数s=3-r(a).B的解的个数为B的秩,So.r(a)+r(b)=3.若方程无解则r(b)
应该是行列式|AB|=0因为A为m*n的矩阵所以r(A)
反证法:如果B的列向量线性相关.则R(B)
AB=0,求证r(A)+r(B)≤n,Sylvester公式r﹙A﹚+r﹙B﹚-n≤r﹙AB﹚右边为零,即得.[Sylvester公式的证明,教材上都有.用分块矩阵的初等变换,打起来麻烦,自己看吧!]
设A的R(A)=r,则Ax=0的解空间的维数为n-r,再设B=[b1,b2,..,bn],其中b1,b2,..,bn是矩阵B的列,由AB=O,得Ab1=O,Ab2=0,...,Abn=0,故b1,b2
是AB=AC吧当A列满秩时齐次线性方程组Ax=0只有零解.由于AB=AC所以A(B-C)=0所以B-C的列向量都是Ax=0的解所以B-C=0,即有B=C.
实际上r(AB)
这个很简单就是考定义(AB)的n次方=AB·AB·AB········AB(共乘以n次)∵AB=BA∴(AB)的n次方=ABABAB········AB=A·A·A·A······B·B·B·B·B·
证明方法:左边按公式展开!右边先用行列式公式计算,然后进行组合,会发现和左边对应相等.不过书写太麻烦了!