M是三角形ABC的边BC的中点,AN平分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:44:28
MN平行于b或属于
证明:取AC的中点E,连接DE、ME∴DE是Rt△ACD的中线∴DE=1/2AC∴DE=CE∴∠CDE=∠C∵M为BC的中点,E为AC的中点.∴EM//AB,EM=1/2AB∴∠EMC=∠B=2∠C∴
图中的黑色和红色的钝角都是直角加角BAC,则黑色角=红色角用边角边证图中的黑三角形和红三角形全等,得到CE=BF角1与角3互余,角2=角1,角3=角4,所以角2与角4互余,CE垂直BF用三角形中位线性
证明:连EM,DM,直角三角形BCE中,EM=BC/2,直角三角形BCD中,DM=BC/2,(直角三角形斜边上中线等于斜边的一半),所以EM=DM,所以三角形DEM是等腰三角形又,MN垂直于DE,所以
图中顶点应该是C而不是E吧,暂且按C考虑.图略,做辅助线CM,即三角形底边AB的中线,可得三角形CMB的面积等于三角形CMA;由CE、DM都垂直于EB得四边形CEMD为梯形,可得三角形CMD面积与三角
连接df,de,因为三角形bfc和三角形bec都是直角三角形,且d是斜边bc上的中点所以df=2分之1bc=de又mf=me,dm=dm所以三角形dmf全等于三角形dme所以∠dmf=90所以垂直
首先要注意到△DBC是Rt△,且BC是斜边,DF是斜边中线∴DF=BC/2(直角三角形斜边上的中线等于斜边的一半)同理亦有EF=BC/2∴DF=EF∴△DEF是等腰三角形证毕!这个过程应该还算是比较详
先画图△BCD为直角三角形M为斜边中点所以MD=1/2BC△CBE为直角三角形M为斜边中点所以ME=1/2BC所以ME=MD所以△EMD为等边三角形N为底边中点所以MN⊥DE
如图:1.向量运算的平行四边形法则 2.重心的性质, 1:2可得答案 A
(1)当角BAC=90,M是BC的中点,AM=BM=MC=BC/2角EAD=90°=角BAC,AE=AB,AC=AD三角形ABC全等三角形AEDED=BC所以ED=2AM
⑴∵∠BAC=90°,∠C=45°,∴ΔABC是等腰直角三角形,A、N重合,AM⊥BC,∴∠MAP=45°=∠C,∠AMQ+∠CMQ=90°,AM=1/2BC=CM,∵∠PMQ=90°,∴∠AMQ+∠
延长BA到B',使得AB=AB'延长CA到C',使得AC=AC'连接B'C,B'C'.在B'C'上取中点M',在AB'上取P'使得AP=AP'连接AM',M'P',P'Q可以知道PQ=P'Q,PM=P
解题思路:梯形解题过程:在△ABC中,D,E,F是三角形ABC各边的中点,AG垂直于BC.垂足为G.求证:四边形DEFG是等腰梯形证明:∵AG⊥BC,F为AC的中点∴FG=1/2AC(直角三角形中斜边
延长BD,交AC于点N∵AD⊥BN,AD平分∠BAN,AD=AD∴△ABD≌△AND∴AB=AN,BD=DN∵M是BC的中点∴DM是△BCN的中位线∴DM=1/2CN=1/2(AC-AN)=1/2(A
证明:延长ND到点E,使DE=DN,连接BE,ME∵DB=DC,DE=DN,∠BDE=∠CDN∴△BDE≌△CDN∴BE=CN∵MD⊥NE∴ME=MN∵BM+BE>ME∴BM+CN>MN
证明:因为 CE垂直于AB, BF垂直于AC , 所以 三角形BCE和三角形BCF都是直角三角形,BC是公用的斜边, 又因为 M是BC中点, 所以 ME=MF=BC/2, 因为 ME=M
提示一下:取PQ中点NAM、AN、MN.先证明MP+MQ>2MN有PQ=AN+AN还有MN+AN≥AM.
(1)延长CE交AB与G∵AE⊥CG,AE平分∠BAC∴△AGE是等腰三角形∴E是GC的中点∵D是CB的中点∴DE//AB∴DE//BF∵EF//BD∴四边形BDEF是平行四边形(2)2BF+AC=A
在直角三角型BDC中,MD是中线,所以MD=BC/2在直角三角型BEC中,ME是中线,所以ME=BC/2所以MD=ME