n (2n-1)判定收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:33:15
判定级数(∞∑n-1)(-1)^n-1/ln(n+1)是否收敛?如果收敛,说明是条件收敛还是绝对收敛

首先看∑1/ln(1+n)因为lim(n→∞)1/ln(1+n)/(1/n)=lim(n→∞)n/ln(1+n)=lim(n→∞)1/(1/(n+1))=lim(n→∞)n+1=∞而∑1/n发散,所以

判定级数n=1-无穷,2^n*n!/n^n 的收敛性

利用根式判别法,lim(n→∞)(2^n*n!/n^n)^(1/n)=lim(n→∞)(2*(n!)^(1/n))/n=2/e<1,所以原级数收敛.

求幂级数∑(x-1)∧n/(n×2∧n)的收敛域

求幂级数Σ[(x-1)^n]/(n*2^n)的收敛域.  利用比值判别法,当   lim(n→∞)|u[n+1](x)/u[n](x)|  =lim(n→∞)|{[(x-1)^(n+1)]/[(n+1

如何证明级数n^n/(n!)^2是收敛的

只需要求后一项与前一项的比值:为(n+1)^(n+1)*(n!)^2/[n^n*(n+1!)^2]=(n+1)^(n-1)/n^n=【(n+1)/n】^n*【1/(n+1)】lim【(n+1)/n】^

求级数∑(n+1)(n+2)x^n的收敛区间,并求和函数

令An=(n+1)(n+2)由比值审敛法:p=lim(n->无穷)An/An+1=1=>收敛半径R=1/p=1=>收敛域:(-1,1)下面来讨论x=-1和1处的敛散性:1.当x=1时,原级数E(n+1

求级数的收敛半径∑((1/2∧n)+3∧n)×x∧n

再问:错的,答案是三分之一再答:

证明:级数∑(n=1,∞) 1/(n²+2n²)是收敛的.

题目错了吧,应是“1/(n³+2n²)”吧1/(n³+2n²)1/(n³+2n²-3n)=1/[n(n+3)(n-1)]=(1/2)[(n+

为什么级数1/n发散,而1/n²却收敛?1/2n发散还是收敛?

先回答标题中的问题,发散∑1/n^p我们称为p级数,当且仅当p>1的时候收敛,证法许许多多至于你说的这个判别方法,要记住一点不论是达朗贝尔,还是柯西法,都是说1时发散,=1的时候这俩法则都不起作用,因

判定级数收敛 an = sin(n+1/n)/n 以及an = sin(n+1)cos(n-1)/n^p...讨论p,怎

利用三角函数的积化和差公式,得到an=sin(n+1)cos(n-1)/n^p=[sin(2n)+sin2]/2n^p={sin(2n)/n^p+sin2/n^p}/2可证当0再问:确实是条件收敛,我

请判断下面这个级数的敛散性,如果收敛,那是绝对收敛还是条件收敛? 1/n^2 + (-1)^n乘以根号n分之一

答案:条件收敛.由于求和(n=1到无穷)1/n^2收敛,求和(n=1到无穷)(-1)^(n-1)/根号(n)用Leibniz判别法知道是收敛的,因此也收敛.故原级数收敛.但通项加绝对值后|1/n^2+

判断级数∑(∞ n=2) -1^n/2^n-1的敛散性,若收敛,是绝对收敛,还是条件收敛,为什么

∑(∞n=2)an=∑(∞n=2)(-1^n)1/2^(n-1)∵∑(∞n=2)|an|=∑(∞n=2)1/2^(n-1)是公比为q=1/2∑(∞n=2)an绝对收敛,从而∑(∞n=2)an=∑(∞n

判定级数∑(1,+∞)n/2^n的敛散性

比值判别法lim[u(n+1)/u(n)]=lim[(n+1)/2^(n+1)/(n/2^n)]=1/2<1所以,级数收敛.

用比较判别法判定以下级数收敛或否,arctan n/n^2和1/根号n^2+a^2

用比较判别法及其极限形式.经济数学团队帮你解答.请及时评价.

求级数∑∞n=1(1/2n)(x^n^2)的收敛域

级数为   ∑{n>=1}[x^(n^2)]/(2n),由于   lim(n→inf.)|{x^[(n+1)^2]}/(2n+2)|/|[x^(n^2)]/(2n)|  =lim(n→inf.)|x^

有关级数收敛若级数∑an收敛,为什么级数∑an + a(n+1)也收敛?而∑a(2n-1) - a(2n)不一定收敛?

例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+

级数收敛设级数∑Un(n=1,2,…,∞)收敛,证明∑(-1)^n*Un/n不一定收敛,(-1)^n指-1的n次方.

只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/