n(n-3) 2=12
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:57:27
用定积分来做把分母上提出个n^2,所以原极限=lim1/n*∑1/[(1+3(k/n)^2]=∫[1/(1+3x^2)]dx积分区间o到1=1/√3arctan√3x|(o到1)=1/√3(π/3-0
证明:①n=1时,左边=2,右边=2,等式成立;②假设n=k时,结论成立,即:(k+1)+(k+2)+…+(k+k)=k(3k+1)2则n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1
n-1=再问:29/20n-4n=
裂项相消法1/3【1/n-1/(n+3)+1/(n+3)-1/(n+6)+1/(n+6)-1/(n+9)】=1/(2n+18)1/3{1/n-1/(n+9)}==1/(2n+18)交叉相乘6n+54=
n²+3n=1n=(-3±√5)/2n(n+1)(n+2)+1=n³+3n²+2n+1=n(n²+3n)+2n+1=3n+1=3(-3±√5)/2+1=(-7±
1、n=1的时候显然成立2、假设当n=k的时候,命题成立即k+(k+1)+(k+2)...+2k=3k(k+1)/2当n=k+1时k+1+(k+1+1)+(k+1+2)……+2k+(2k+1)+(2k
这很简单就是整式的加减法和乘法,大约是初一(七年级)下学期的内容1+(n+1)+n*(n+1)+n*n+(n+1)+1=1+n+1+n²+n+n²+n+1+1=2n²+3
二项式展开,左=1+n*2/n+n(n+1)/2*(2n)²+.>=3+2(n+1)/n=5+2/n>5-2/nn>=3用在左边展开时,至少得到三项的合理性
n/(n^2+1)+n/(n^2+2)+n/(n^2+3)+……+n/(n^2+n)n/(n²+n)+n/(²+n)+.+n/(n²+n)=n*n/(n²+n)
2分之n(n-3)=20n(n-3)=40;n^2-3n-40=0;n^2-3n-5×8=0;分解得(n-8)(n+5)=0;则n-8=0或n+5=0n=-5或8
这个就是二项式定理的逆用1+2C(n,1)+4C(n,2)+...+2^nC(n,n)=1*C(n,0)+2C(n,1)+4C(n,2)+...+2^nC(n,n)=(1+2)^n=3^n明教为您解答
[n/2]+[n/3]+[n/4]+[n/5]+[n/6]=(30n+20n+15n+12n+10n)/60=87n/60=29n/60题目是不是打错了..等于29吧?这样n=60再问:是69~~~└
全部展开,A(n)=an^4+bn^3+cn^2+dn+6然后分4个数列求和,前面系数提出来就是单阶的求和了,都有公式吧
16n^4+4n^3+6n^2+7n=0n(16n^3+4n^2+6n+7)=0n=016n^3+4n^2+6n+7=0(无实数解)所以原方程的解是n=0
(n-2)(n-3)÷2=(n平方-5n+6)÷2=n平方/2-5n/2+3再问:��n²��2-5n��2+3��再答:��
先证明对于任意x≠0,1+xf(0)=1>0,即1+x
当n=1时,左边=4,右边=4,等式成立假设n=k时,1×2^2+2×3^2+3×4^2+...+k×(k+1)^2=k×(k+1)×(3k^2+11k+10)/12当n=k+1时,左边=1×2^2+
m/(m+n)+n/(m-n)-n^2/(m^2-n^2)=[m(m-n)+n(m+n)-n^2]/(m^2-n^2)=m^2/(m^2-n^2)=1/(1-(n/m)^2)=1/(1-(3/2)^2
2^(n-1)+2^(n-2)+2^(n-3)+.+2^(n-n)为等比数列公比为q=0.5,利用等比数列求和公式Sn=(a1+an*q)/(1-q)(公比为q)此处q=0.5证明见下2^(n-1)+
mc(n,m)=m(n!)/(m!)(n-m)!=(n!)/(m-1)!(n-m)!=n*(n-1)!/(m-1)!(n-m)!=nc(n-1,m-1)所以等式左边=nc(n-1,0)+nc(n-1,