规定零矩阵秩为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:45:04
非零矩阵乘积为零的条件

AB=0的充要条件若B中的列向量均为Ax=0的解.(也可以说为B是由Ax=0的解空间中n个向量构成的矩阵)

矩阵与其转置矩阵的乘积为零矩阵 证明原矩阵为零矩阵

直接把矩阵展开写成A=(a11a12……a1na21a22……a2n………………an1an2……ann)然后直接把A’写出来直接乘在一起,关注主对角线上的元素就可以了

两个矩阵相乘零矩阵,秩的关系

两种证明方法.第一种是用分块矩阵乘法来证明.(不太好书写,可以见线性代数习题册答案集);第二种是线性方程组的解的关系来证明.因为AB=0,所以B的每一列都是线性方程组AX=0的解.而根据线性方程组理论

已知两个非零矩阵乘积为零矩阵,证明这两个矩阵不可逆.

AB=O反证法:如果A可逆,则(B可逆同理)两边同乘以A^(-1),得A^(-1)AB=A^(-1)OB=O与矩阵非零矛盾,所以这两个矩阵不可逆.

n阶矩阵A是n阶单位矩阵里的零全变成a.若矩阵A的秩为n-1,则a必为多少?

|A|=[1+(n-1)a](1-a)^(n-1)因为r(A)=n-1所以|A|=0所以a=1或a=1/(1-n)但a=1时r(A)=1所以a=1/(1-n)再问:第一步是怎么来的?再答:1.����

怎么证明幂零矩阵的特征值为零

设A^m=0,特征值为c,则有Ax=cx,A^2x=c^2x,以此类推有A^mx=c^mx,由A^m=0有c^m=0,因此c=0,即A的特征值是0

满秩矩阵的行列式值不为零

对的.先看矩阵秩的定义:矩阵A中如果存在一个r阶子式不等于0,而所有的r+1阶子式(如果存在的话)全等于0,则规定A的秩R(A)=r.那么,如果n阶方阵A满秩,就是A的秩为n,则A有一个n阶子式不等于

两个矩阵的乘积为零矩阵,那么这两个矩阵的秩之间有什么关系?

忘得差不多了,只记得有一个:两个n阶矩阵的乘积为零矩阵,则两个n阶矩阵的秩之和小于等于n

两个矩阵的乘积为零 它们的 秩有什么关系

设AB=0,A是mxn,B是nxs矩阵则B的列向量都是AX=0的解所以r(B)

除了零矩阵以外还存在其它秩为0的矩阵吗

根据定义,0矩阵是唯一秩为0的矩阵.非零矩阵,一定有一个数不为零,故一定有一个1阶的非零子式

矩阵A乘矩阵B等于零矩阵,矩阵A可逆,是否可以判断矩阵B为零矩阵,理由?

可以AB=0等式两边左乘A^-1即得B=0再问:您好,那如果A不可逆,要如何处理?再答:A不可逆,B就不一定等于0再问:对于这一结论,只能举例吗,能否通过公式说明B不一定等于0?再答:矩阵的乘法有零因

为什么矩阵A不等于零或非奇异,A就为满秩矩阵

矩阵A的行列式不等于零或非奇异,A就为满秩矩阵,这就是满秩矩阵的定义.

一个矩阵的秩为零的充要条件是什么?

应该是零矩阵吧!否则,有任意一个非零数字,在利用行(或列)变换时,总有不为零的数存在,秩至少要大于1.

线性代数,证明矩阵的秩一种定义:矩阵A的不为零的子式的最高阶数,叫做矩阵A的秩

课本上有定理证明.其实只要理解了规律,这个定理会很容易记住的.对秩的理解也会加深,对线代整个体系的掌握也会提升.

求矩阵的秩,阶梯式最后一行一定要全为零吗

你好:不是的,不是非得最后一行为0的;矩阵的秩:通过初等行变换(就是一行的多少倍加的另一行,或行交换,或者某一行乘以一个非零倍数)把矩阵化成行阶梯型(行阶梯形就是任一行从左数第一个非零数的列序数都比上