计算zds,其中s为锥面被柱面x2 y2=2ax所截得有限部分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 22:58:35
利用柱面坐标系画出锥面和球面上半部分构成的图形(mathematica)

RegionPlot3D[z>=3*Sqrt[x^2+y^2]&&(*与球面改了球心位置,否则空图!,自己按需要再改参数*)x^2+y^2+(z-3)^235,PlotRange->All]

计算曲面积分∫∫∑ z^2 dS其中 ∑为柱面x^2+y^2=4 介于0≤z≤6的部分

考虑yz面Σ₁:x=√(4-y²)或Σ₂:x=-√(4-y²)dx/dy=-y/√(4-y²)dx/dz=0∫∫Σz²dS=2∫∫Σ&#

求锥面z=√(x^2+y^2)被柱面z^2=2x所割下部分的曲面面积

不需要那样做由z=√(x^2+y^2)和z^2=2x可得曲面在xoy平面的投影为Dxy:(x-1)^2+y^2≤1dz/dx=x/√(x^2+y^2),dz/dy=y/√(x^2+y^2)√((dz/

高等数学利用柱面坐标计算三重积分.

仅供参考再问:答案不对…>.

证明锥面z=2√x^2+y^2被柱面x^+y^=2x所截得的有限部分的面积为√5π

可以用曲面积分来求.因为曲面是锥面z=2√x^2+y^2的一部分.满足z'x=2x/√x^2+y^2,z'y=2y/√x^2+y^2设∑表示x^2+y^2=2x所围成的圆域,S∑表示这个圆的面积.所求

证明在空间仿射坐标系中,方程为飞f(s,t)=0的图像是柱面,其中s=a1x+b1y+c1z,t=a2x+b2y+c2z

柱面是一直线沿一曲线平移所形成的曲面,直线经过平移就是一族母线..如果母线的方向是向量,X是母线L上的点,那L的参数方程就是X+tα,t是参数.换言之,如果能证明某个常向量α是母线的方向,即对曲面上任

计算二重积分∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-y)dxdy 其中E 为锥面z=根号下(x^2

补一个面(构成封闭曲面),用高斯公式:补面∑1:z=h取上侧(构成封闭圆锥面的外侧)x²+y²≤h²原积分=∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-

∫∫xdydz+ydzdx+(z^2-2z)dxdy 其中∑为锥面 z=根号x^2+y^2 被平面z=0 和z=1所截得

Gauss公式.∂P/∂x+∂Q/∂y+∂R/∂z=1+1+2z-2=2z∫∫Σxdydz+ydzdx+(z²-2z)

计算∫∫∑(x^2+y^2)dS其中∑为锥面z=√(x^2+y^2)及平面z=1围成的整个边界曲面

再问:我漏了平面的了。还有一道题!再答:说来看看,不过要确保那个曲面是有限的

计算二重积分(y-z)x^2dzdx+(x+y)dxdy其中是柱面x^2+y^2=1及平面z=0

=∫x(yzx^2-1/2(xz)^2)dx+∫y(1/2x^2+xy)dy=[1/3yzx^3-1/6z^2x^3+1/2x^2y+1/2xy^2]|z[0,2]、y[0,1]、x[0,1]=1

计算曲面积分如图其中曲面是柱面x^2+y^2=1被平面z=0和z=3所截得的在x》=0的部分,取外侧

高斯公式法.取Σ:x²+y²=1,前侧补Σ1:z=3,上侧补Σ2:z=0,下侧补Σ3:x=0,后侧∫∫(Σ+Σ1+Σ2+Σ3)ydzdx=∫∫∫Ω(0+1+0)dxdydz=∫∫Ω

数控车床,我看师傅他怎么用G71去车内锥面?他还要去计算锥面的长度呢?条件是这样:D30 d22 角度为20.

车削非平行X,Y轴的路线时(R、C、锥度).G71是复合引起循环切削指令,荒料时系统不会执行指定区域内的T指令会引起过切或少切的现象.师傅们是使用手动录入编程的方法吧?是在计算排除荒料时刀尖半径对响精

通用曲面方程用一个数学模型表示出球面方程,柱面方程,锥面方程和平面方程.

球面(x-a)^2+(y-b)^2+(z-c)^2=R^2柱面(x-a)^2+(y-b)^2=R^2锥面z=+√(x^2+y^2)或-√(x^2+y^2)平面ax+by+cz+d=0

用柱面坐标计算三重积分(Ω)∫∫∫xyzdy,其中Ω是柱面x^2+y^2=1与平面z=0与z=3所围成的面积

"使用柱坐标系:0≤θ≤π/2,0≤ρ≤1,0≤z≤1∫∫∫xydv=∫(0→π/2)dθ∫(0→1)ρdρ∫(0→1)ρ^2sinθcosθdz=∫(0→π/2)dθ∫(0→1)ρ^3sinθcos

求锥面z=√ (x^2+y^2)与柱面z^2=2x所围立体在xoz面的投影.

/>要求锥面z=√(x^2+y^2)与柱面z^2=2x所围立体在xoz面的投影可以分开求锥面z=√(x^2+y^2)在xoz面的投影,和柱面z^2=2x在xoz面的投影,这两个投影重叠部分即为锥面z=

∫s∫e/ √(X^2+Y^2)dxdy其中S为锥面z=√X^2+Y^2及平面z=1,z=2所围立体整个边界外侧(√为根

被积函数是e^z/√(x^2+y^2)Gauss公式,三重积分用截面法Ω:1≤z≤2,x^2+y^2≤z^2I=∫∫∫e^z/√(x^2+y^2)dxdydz=∫e^zdz∫∫1/√(x^2+y^2)