计算∫Lxydx,其中L为圆周x^2 y^2=1在第一象限的第一段
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:37:24
积分曲线为圆心在(2,0),半径为2的上半圆周,补充曲线L‘:y=0上从(4,0)到(0,0)的一段,这样L+L’构成了闭曲线,可以用格林公式计算.设P=x^2+3y,Q=y^2-x,则Q‘x=-1,
请教斯托克斯公式.10-离问题结束还有14天11小时∫Lyzdx+3zxdy-xydz,其中L为圆周x^2+y^2=4y,3y-z+1=0,从z轴正向看,L为逆时针方向.我觉得cosb=3/sqrt(
令P=x^2-y,Q=-x-(cosy)^2∵αP/αy=αQ/αx=-1∴由格林定理知,此曲线积分与路径无关,只与始点和终点有关于是,计算此积分取路径为:y=0,0≤x≤1故I=∫x^2dx=1/3
这个可以补上y=0处的线段L1:0
http://zhidao.baidu.com/question/1894230337967359940.html?oldq=1那天我答得一道题,跟这个非常非常像,你比着做吧.
直接用第二型积分的计算公式.圆的参数方程为x=acost,y=asint,dx=-asintdt,dy=acostdt,逆时针方向对应的t从0到2pi.代入得原积分=积分(从0到2pi)[(acost
因为(1+xe^2y)对y求偏导数得:2xe^2y;(x^2e^2y-y^2)对x求偏导数得:2xe^2y,故积分与路径无关.选取路径:y=0,0《x《4,代入得:∫L(1+xe^2y)dx+(x^2
柯西积分公式原式=2πie^z|z=0=2πi希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
由于曲线不封闭,补L1:y=0,x:0-->aL+L1为封闭曲线,可用格林公式:∫(e∧xsiny-y)dx+(e∧xcosy-1)dy=∫∫1dxdy被积函数为1,结果为区域的面积,这是个半圆,面积
∵L圆周x^2+y^2=2x的半径是1∴L圆周面积∫∫dxdy=π*1^2=π(S表示L圆周x^2+y^2=2x区域)故∫L(x^2-2y)dx+(x+y^2siny)dy=∫∫[α(x+y^2sin
因为所给曲线为关于x轴对称的半圆吧?我们可以用对称性,直接研究第一象限中的曲线部分吧?再乘以2不完了吗?因此绝对值可以去掉了吧?用极坐标代换简单的……分别计算简单,没有什么捷径可走的,分成两个曲线计算
∮xy^2dy-x^2ydx=∫∫(x^2+y^2)dxdy≠∫∫a^2dxdy!用高斯公式已将曲线积分化为了二重积分,是在整个区间D上,不是在圆周上.
补上线段y=0则令P=e^xsiny-y,dP/dy=e^xcosy-1Q=e^xcosy-1,dQ/dx=e^xcosy∫_L(e^xsiny-y)dx+(e^xcosy-1)dy=∫∫_D[(e^
再问:😭再问:老师,把dy化成dx,在dy的式子后面乘以x2的导数是什么意思啊再答:dy=y'dx再问:谢谢老师😂再问:等等,那不是应该除以一个y',才能变成dx吗再答
令z=re^(iθ),则z共轭=re^(-iθ),dz=rie^(iθ)dθ,|z|=r,所以积分=∮rdθ,这里r=2,所以积分=2∮dθ(积分限0到2π)=4π
x=Rcosθ,y=R+Rsinθ,θ:0→2π原积分=∫(0→2π)Rcosθ(R+Rsinθ)d(R+Rsinθ)=∫(0→2π)(R³cos²θ+R³cos
I=∫L(e^(x^2+y^2)^(1/2))ds=∫Le^(R)ds=e^R∫Lds=e^R·2πR=2πRe^R
因为P=-x^2y,Q=xy^2.所以Py=-x^2,Qx=y^2.利用格林公式:∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy,其中c是的取正向的边界曲线.故原式=
C为右半单位圆周化为参数方程x=costy=sintt∈[-π/2,π/2]∫Cy²ds=∫[-π/2,π/2]sin²t√[(dx/dt)²+(dy/dt)²