计算二重积分 xy dxdy 其中d

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:45:45
已知二重积分区域D由直线y=x,圆x^2+y^2=2y,以及y轴围成,求二重积分∫∫xydxdy

用极坐标,x²+y²=2y的极坐标方程为:r=2sinθ∫∫xydxdy=∫∫r³cosθsinθdrdθ=∫[π/4→π/2]cosθsinθdθ∫[0→2sinθ]r

计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1

用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2

计算二重积分∫∫1/(x^2+y^2+R^2)dxdy,其中D为x^2+y^2

转化到极坐标系,则x²+y²=r²,x=rcosθ,y=rsinθ积分域D={(x,y)|x²+y²≤R²}={(r,θ)|0≤r≤R,0≤

计算二重积分∫∫(x^2+y^2+x)dxdy,其中D为区域x^2+y^2

首先计算∫∫xdxdy,由于被积函数是关于x的奇函数,而积分区域关于y轴对称,所以∫∫xdxdy=0,原积分=∫∫(x^2+y^2)dxdy,用极坐标计算,=∫dθ∫r^3dr,(r积分限0到1,θ积

二重积分高数题二重积分:∫d∫xydxdy D:y=x y=x/2 y=2 所围成的面积 计算出来 看看

观察图像可确定:原积分变为§(0,2)dy§(y,2y)xydx=§(0,2)ydy[x^2/2|(y,2y)]=§(0,2)[3y^3/2]dy=(3y^4/8)|(0,2)=6

算一个高数题目计算∫∫xydxdy,其中D由y=根号x,x+y=2,y=0围成的平面区域我这么化简的∫(下界0上界1)d

你把区域弄错了,y=0是x轴,你看成y轴了先y后x的次序:∫(下界0上界1)dx∫(下界0上界√x)xydy+∫(下界1上界2)dx∫(下界0上界2-x)xydy先x后y的次序:∫(下界0上界1)dy

利用极坐标计算∫∫xydxdy,其中D是第一象限中x+y=1与x+y=2x所围成的闭区域.

x+y=1的极坐标方程为:r=1x+y=2x的极坐标方程为:r=2rcosθ,即r=2cosθ2cosθ=1,则:cosθ=1/2,θ=π/3请自己画图因此两曲线所围区域可分为两部分,第一部分θ:0-

计算二重积分,∫∫4(x*2+y*2)dxdy,)其中D:x*2+y*2

直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π

计算积分∫∫ √y^2-xydxdy,其中D是由直线y=1,y=x,x=0围成的闭区域

看图片,不懂再问.再问:谢谢,我先看看

计算二重积分∫∫xydxdy ,其中积分区域 D是由y=x ,y=1 ,和x=2 所围成的三角 形域.D

X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x

用极坐标计算二重积分∫∫[D]arctan(y/x)dxdy,其中=D:1

∫∫[D]arctan(y/x)dxdy=∫dθ∫arctan(sinθ/cosθ)rdr(作极坐标变换)=∫dθ∫r^2dr=(π/4)(8/3-1/3)=7π/12.再问:书本答案是3(π^2)/