计算二重积分,其中D是由圆周
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:38:03
极坐标∫∫(D)ln(1+x²+y²)dxdy=∫∫(D)rln(1+r²)drdθ=∫[0→2π]dθ∫[0→1]rln(1+r²)dr=2π∫[0→1]rl
极坐标系D:0≤θ≤π/2,0≤p≤2∫∫√(1+x²+y²)dxdy=∫[0,π/2]dθ∫[0,2]√(1+p²)pdp=π/2*(1/3)(1+p²)^(
再问:最后不应该是ln2*π/4吗?再答:是的再问:非常感谢,我还有一道你能帮我做一下么,我已经提问了,你搜一下吧计算二重积分:∫∫(D)ydxdy,其中D:x^2+y^2≤2x,y≥0再答:解法一样
原式=∫dθ∫rdr/√(4-r^2)(作极坐标变换)=2π∫rdr/√(4-r^2)=2π[√(4-0^2)-√(4-2^2)]=4π.
{y=x²、y=0{x=1∫∫xydxdy=∫[0→1]dx∫[0→x²]xydy=∫[0→1]x*[y²/2]:[0→x²]dx=∫[0→1]x/2*x
一楼在做完第一个积分时少了个2倍,二楼的结果是正确的.不过一楼的方法更好些,二楼的方法一般的工科学生不会用.
被积函数y关于自变量y是奇函数,而积分区域是关于x轴对称的.根据二重积分被积函数的奇偶性和积分区域的对称性,这个积分显然是0.
不用算就是0.积分区域关于x轴是对称的,被积函数y关于x轴是奇函数,即f(x,-y)=-y=-f(x,y),因此积分值必是0.
∫∫xy²dxdy=∫dθ∫(rcosθ)*(rsinθ)²*rdr(应用极坐标变换)=∫(cosθsin²θ)dθ∫r^4dr=∫sin²θd(sinθ)∫r
令x=x^2,得到x=0和x=1,所以积分区域x是在0到1之间,而且在此区域里,x>x^2显然不能直接对(sinx/x)dx进行积分,所以先对dy进行积分∫∫(sinx/x)dxdy=∫(上限1,下限
我来试试吧.∫∫xydσ=∫(0到1)dx∫(0到1-x)xydy=∫(0到1)xdx∫(0到1-x)ydy=∫(0到1)x[1/2y²]((0到1-x)dx=∫(0到1)1/2x(x-1)
X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x
用极坐标∫∫e^(x^2+y^2)dδ=∫(0~2π)dθ∫(0~2)e^(ρ^2)ρdρ=2π∫(0~2)e^(ρ^2)ρdρ被积函数的原函数是1/2×e^(ρ^2),所以结果是π(e^4-1)
∫(从0到1)dx∫(从0到x)sinx/xdy=∫(从0到1)(sinx/x)*xdx=∫(从0到1)sinxdx=-cosx(0到1)=cos1-1再问:啊我知道了..谢谢啦~