计算二重积分∫D∫xcos(x y)d,其中D是由顶点分别

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 14:35:11
计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1

用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2

计算二重积分∫∫1/(x^2+y^2+R^2)dxdy,其中D为x^2+y^2

转化到极坐标系,则x²+y²=r²,x=rcosθ,y=rsinθ积分域D={(x,y)|x²+y²≤R²}={(r,θ)|0≤r≤R,0≤

计算二重积分∫∫(x^2+y^2+x)dxdy,其中D为区域x^2+y^2

首先计算∫∫xdxdy,由于被积函数是关于x的奇函数,而积分区域关于y轴对称,所以∫∫xdxdy=0,原积分=∫∫(x^2+y^2)dxdy,用极坐标计算,=∫dθ∫r^3dr,(r积分限0到1,θ积

利用二重积分的几何意义计算二重积分.∫∫(b-Sqrt(x^2+y^2))dσ,D:x^2+y^2≤a^2,a>0

分成两部分计算:∫∫bdσ表示一个圆柱的体积,圆柱的底圆为x²+y²≤a²,高为b,因此体积为:πa²b∫∫√(x²+y²)dσ表示一个圆柱

二重积分高数题二重积分:∫d∫xydxdy D:y=x y=x/2 y=2 所围成的面积 计算出来 看看

观察图像可确定:原积分变为§(0,2)dy§(y,2y)xydx=§(0,2)ydy[x^2/2|(y,2y)]=§(0,2)[3y^3/2]dy=(3y^4/8)|(0,2)=6

计算二重积分∫∫(X/1+XY)dxdy,D=[0,1]*[0,1]

【数学之美】团队为你解答,如果解决问题请采纳.

计算二重积分,∫∫(x+y)dxdy,其中D为x^2+y^2≤x+y

这题的积分区域---圆域的圆心为(1/2,1/2),半径为(√2)/2因为圆心非原点,所以无论用直角坐标还是极坐标,上下限都不好确定.所以应想到把圆域平移到原点处,即用坐标变换.但二重积分的坐标变换涉

二重积分计算∫∫(x^2-y^2)dxdy D是闭区域0

使用直角坐标,∫∫(x^2-y^2)dxdy=∫[0,π]dx∫[0,sinx](x^2-y^2)dy=∫[0,π](x^2y-1/3y^3)|[0,sinx]dx=∫[0,π](x^2sinx-1/

计算二重积分 ∫∫cos(x+y)dxdy D={(x,y)|0

∫∫cos(x+y)dxdy∫dx∫cos(x+y)dy,x的上下限是π和0,y的上下限是π和0∫dx∫dsin(x+y)=∫[sin(π+x)-sinx]dx=∫-2sinxdx=2∫dcosx,x

二重积分的问题I=∫∫D xcos(x+y)dxdy 其中D是顶点分别为(0,0)(180度,0)(180度,180度)

(π:0)表示上下限I=∫(π:0)xdx∫(x:0)cos(x+y)dy=∫(π:0)[(sin(x+y)|(x:0)]xdx=∫(π:0)(xsin2x-xsinx)dx=-x(cos2x)/2+

二重积分含绝对值的例题 ∫∫|sin(x+y)|δ 计算其二重积分D:x在o到pai之间 y在0到2pai之间.

用直线x+y=π和x+y=2π将积分区间分成三部分则∫∫|sin(x+y)|δ=∫(0到π)dx∫(0到π-x)sin(x+y)dy-∫(0到π)dx∫(π-x到2π-x)sin(x+y)dy+∫(0

计算二重积分,∫∫4(x*2+y*2)dxdy,)其中D:x*2+y*2

直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π

∫ xcos(x/3) dx ...

∫xcos(x/3)dx=3∫xdsin(x/3)=3xsin(x/3)-3∫sin(x/3)dx+C=3xsin(x/3)+9cos(x/3)+CC为任意常数

计算二重积分D∫∫e^(-x^2-y^2)dδ d:x^2+y^2

换成极坐标x=pcosty=psintp∈[0,a]t∈[0,2π]∫∫e^(-x^2-y^2)dδ=∫[0,2π]dt∫[0,a]e^(-p^2)pdp=t[0,2π]*[-1/2e^(-p^2)]

用极坐标计算二重积分∫∫[D]arctan(y/x)dxdy,其中=D:1

∫∫[D]arctan(y/x)dxdy=∫dθ∫arctan(sinθ/cosθ)rdr(作极坐标变换)=∫dθ∫r^2dr=(π/4)(8/3-1/3)=7π/12.再问:书本答案是3(π^2)/