计算二重积分∫∫xydσ 其中D是由曲线y=x 2及直线y=x轴围成的闭区域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 12:21:49
计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1

用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2

计算二重积分∫∫1/(x^2+y^2+R^2)dxdy,其中D为x^2+y^2

转化到极坐标系,则x²+y²=r²,x=rcosθ,y=rsinθ积分域D={(x,y)|x²+y²≤R²}={(r,θ)|0≤r≤R,0≤

计算二重积分∫∫(x^2+y^2+x)dxdy,其中D为区域x^2+y^2

首先计算∫∫xdxdy,由于被积函数是关于x的奇函数,而积分区域关于y轴对称,所以∫∫xdxdy=0,原积分=∫∫(x^2+y^2)dxdy,用极坐标计算,=∫dθ∫r^3dr,(r积分限0到1,θ积

利用二重积分的几何意义计算二重积分.∫∫(b-Sqrt(x^2+y^2))dσ,D:x^2+y^2≤a^2,a>0

分成两部分计算:∫∫bdσ表示一个圆柱的体积,圆柱的底圆为x²+y²≤a²,高为b,因此体积为:πa²b∫∫√(x²+y²)dσ表示一个圆柱

计算二重积分,∫∫(x+y)dxdy,其中D为x^2+y^2≤x+y

这题的积分区域---圆域的圆心为(1/2,1/2),半径为(√2)/2因为圆心非原点,所以无论用直角坐标还是极坐标,上下限都不好确定.所以应想到把圆域平移到原点处,即用坐标变换.但二重积分的坐标变换涉

计算二重积分∫∫xydσ 其中D是由曲线y=x 2及直线x=1,y=0轴围成的闭区域

{y=x²、y=0{x=1∫∫xydxdy=∫[0→1]dx∫[0→x²]xydy=∫[0→1]x*[y²/2]:[0→x²]dx=∫[0→1]x/2*x

二重积分的问题区域D:X^2+Y^2小于等于1 则 ∫∫xydσ=0 关于这点我有点疑问区域是个圆形,所以关于X轴 Y轴

(1)没错,(2)有错.将区域D分成四个象限(这个词应该不用解释了吧),则由于原点对称的原来象限1上的积分与象限3上的积分相等,同理,象限2与象限4上的积分相等.但是原点对称不能保证象限1与象限2上的

计算二重积分,∫∫4(x*2+y*2)dxdy,)其中D:x*2+y*2

直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π

计算二重积分∫∫sin(x^2+y^2)dxdy,其中D:x^2+y^2≤4

我不能传图片--||用换元法:x=r*cos(a);y=r*sin(a)∫∫sin(x^2+y^2)dxdy=∫∫r*sin(r^2)drda;其中r的积分限为:[0,2],a的积分限为:[0,2pa

计算二重积分∫∫xydσ其中D是由直线x=0、y=0及x+y=1所围成的闭区域.

我来试试吧.∫∫xydσ=∫(0到1)dx∫(0到1-x)xydy=∫(0到1)xdx∫(0到1-x)ydy=∫(0到1)x[1/2y²]((0到1-x)dx=∫(0到1)1/2x(x-1)

用极坐标计算二重积分∫∫[D]arctan(y/x)dxdy,其中=D:1

∫∫[D]arctan(y/x)dxdy=∫dθ∫arctan(sinθ/cosθ)rdr(作极坐标变换)=∫dθ∫r^2dr=(π/4)(8/3-1/3)=7π/12.再问:书本答案是3(π^2)/

计算二重积分∫∫e^y^2dσ,其中D:y=x及y=2x,y=1所围成的闭区域

y=x及y=2x,y=1交点(1/2,1),(1,1)则∫∫e^y^2dσ=∫[0,1]∫[y/2,y]e^y^2dxdy=∫[0,1]e^y^2∫[y/2,y]dxdy=∫[0,1]e^y^2*y/

计算二重积分D∫∫xydσ,D是由直线y=1,X=2及y=x所围成的闭区域,

把二重积分化为累次积分∫(1到2)[∫(y到2)xydx]dy=∫(1到2)[(1/2)yx^2|(y到2)]dy=∫(1到2)[2y-(1/2)y^3]dy=y^2-(1/8)y^4|(1到2)=9

计算∫∫xydδ,其中D是由直线y=1,x=0及y=x所围成的闭区域 D

x型:对于闭区域D,0≤x≤1,x≤y≤1∴∫∫xydδ=∫(D1)dx∫(D2)xydy,其中D1即0≤x≤1,D2即x≤y≤1原式=∫D1(1/2x-1/2x³)dx=1/8或者y型:0