计算曲面由z=x^2 y^2 与 z=√x^2 y^2 所围成的立体体积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 01:55:21
再问:谢谢(不过最后一步写错了,5/2还要乘2π/3
-(pi*(5*5^(1/2)-27))/6另附Matlab程序段:%此程序为计算空间中给定的曲面r(u,v)的面积clearall;clc;symsuv;%{设置曲面的向量形式r(u,v)=分量函数
x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²
由旋转抛物面的性质,所围体积等于y=x²围绕y轴旋转所得体积,积分区域x(0,1)V=∫πx²dy=2∫πx³dx=π/2
这种题目的基本思路是运用Fubini定理,必要时用极坐标换元.再问:Fubini定理是什么再答:fubini定理即富比尼定理,参考资料是百度百科。这个定理在微积分的书里一般都有,百科中的“σ-有限测度
所围成立体的体积=∫dx∫(2-x-y)dy=∫(2√x-x/2-x^(3/2)-2x²+x³+x^4/2)dx=4/3-1/4-2/5-2/3+1/4+1/10=11/30
z从0到1,立体垂直于z轴的截面为圆,半径r^2=x^2+y^2,面积s=πr^2=π(x^2+y^2)=πz.所以V=s(z)从0到1的积分,所以V=πz^2/2|(0,1)=π/2-0=π/2由旋
这是一个圆锥面和一个旋转抛物面相交的情形.画出图像就很容易定出积分上下限了.方法一:用三重积分计算体积,积分限为:0≤θ≤2π,0≤ρ≤1,ρ²≤z≤ρ,积分后的结果有v=π/6方法二:先用
首先你要知道这个积分区域是什么:2z=x^2+y^2,旋转抛物面,(x^2+y^2)^2=x^2-y^2柱面,Z=0,不用说.(x^2+y^2)^2=x^2-y^2在极坐标下是r^2=cos2θ,由对
用高斯公式:P=x^3,Q=z,R=y,积分区域为圆柱:x^2+y^2=4,与平面z=0,Z=1I=∫∫∫3x^2dxdydz(下面用柱面坐标)=3∫(0,2π)(cosθ)^2dθ∫(0,2)r^3
可以用柱面坐标,立体体积=4∫(0,π/2)dθ∫(0,1)rdr∫(r²,r)dz=4π/2∫(0,1)(r²-r³)dr=2π(r³/3-r^4/4)|(0
这题用二重积分,三重积分都可求得.
1e^z=xyze^zz'x=yz+xyz'xz'x=yz/(xy-e^z)=yz/(xy-xyz)=z/(x-xz)类似z'y=z/(y-yz)dz=[z/(x-xz)]dx+[z/(y-yz)]d
使用高斯公式后,化简后被积函数跟积分区域的圆柱体挺难构造关系,就按投影一步一步算吧.∑被积区域可以看成3个平面围成,S1:z=R,S2:z=-R,S3:x^2+y^2=R^2.可以看出S1,S2只在x
积分域是单叶双曲面与两平面所围成.记为Q.它在第一卦限的部分记为Q1由于区域的对称性和函数的奇偶性,可知,∫∫∫(x+y)dV=0.即以下只要计算:∫∫∫z^2)dV.再由对称性:∫∫∫(x+y+z^
这题,昨天刚刚答了.这个不能用高斯定理,因为在这个比区域内,含有积分函数的奇点(0,0,0)所以分开来求即可.对于z=R和z=-R两个面∑1和∑2,因为dz=0而且两个面处,z=R处的投影,是朝上的圆
/>曲面的切平面为xXo-2yYo+2zZo=1求最短距离,则切平面与平面x+y+z=2平行即Xo/1=-2Yo/1=2Zo/1即Xo=-2Yo=2Zo即2xZo+2yZo+2zZo=1即2Zo(x+
先参数化x=|a|sinφcosθy=|a|sinφsinθz=|a|cosφ因为z>=0,且0
记F(x,y,z)=x^2+4y^2+z-9则法向量是(Fx.Fy,Fz)=(2x,8y,1)根据平面H:4x+8y+z=k的法向量是(4,8,1)求出(x,y,z)=(2,1,1)代入H中得k=17