n元非齐次线性方程组Ax=b有解的充要条件
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:23:52
思路:设a1,...,ar是AX=0的基础解系,c是AX=b的特解则c,c+a1,...,c+ar是非齐次线性方程组AX=b的解集合的一个极大无关组再问:证明c,c+a1,...,c+ar是极大无关组
不对.Ax=b有无穷多解,A不满秩,Ax=0有非零解;反之未必,Ax=0有非零解,A不满秩,但Ax=b可能无解.如有解则有无穷多解.
Ax=b有解的条件是r(A)=r(A|b),所以D肯定不对,因为它没有考虑增广矩阵C显然不对,因为m=n不保证A满秩A显然对,因为r(A)=m,而r(A|b)不可能比m大,因为A|b只有m行,秩不可能
AX=B有解的充要条件是r(A,B)=r(A)
未知数的个数多于方程的个数;比如三个未知数:X,Y,Z;两个方程:X+Y+Z=100X-Y+Z=1X=(101-2Z)/2Z任意Y=99/2无穷多组解用较专业一点的说法,非齐次线性方程组Ax=B有无穷
n元线性方程组AX=b有唯一解的充分必要条件是r(A)=r(A,b)=nr(A)=n并不能保证r(A)=r(A,b)比如增广矩阵=111011001r(A)=2,r(A,b)=3
若m>n则r(A)≤min(m,n)≤n若m=n则r(A)=n=m若m
R(A)=R(A,b)
是对的,当系数矩阵的秩r(A)和增广矩阵的秩r(~A)相等的时候,n元非齐次线性方程组AX=b是有解的,两者不等的时候方程组则无解
设n元非齐次线性方程组AX=B有解,其中A为(n+1)×n矩阵,则|(A|B)|=0再问:怎么算的,为什么?再答:AX=B有解,所以A的秩等于(A|B)的秩,所以(A|B)不是满秩的。
设ka+k1b1+...+krbr=0用A左乘等式两边,再由已知得kb=0所以k=0所以k1b1+...+krbr=0因为b1,...,br是基础解系(线性无关)所以k1=...=kr=0所以a,b1
很明显b=2,a不等于1时r(A)=3=n,你见过3个向量组的秩为4的吗?你理解错了.
a,b,d正确.a:Ax=0有仅有0解,A为满秩矩阵,则A的行秩=N,则A的增广阵行秩也为N,则A的增广阵秩为N,由判定定理可得结论;b:Ax=b有无穷多个解,由非齐次判定定理R(A,b)=R(A)<
R(A)=R(Ab)
(A)不对.c1r1+c2r2+c3r3是AX=B的解c1+c2+c3=1(B)不一定(C)正确.A(2r1-3r2+r3)=2Ar1-3Ar2+Ar3=2B-3B+B=0.(D)不一定
设B=(A,b)也就是把b这一列添加到矩阵A的右侧形成一个新的矩阵B,如果B的秩等于矩阵A的秩,那么方程组有唯一解,答案可以写成r(A,b)=r(A)
-r(A)=r(A)-r(A)
由于n元线性方程组Ax=b有唯一解的充要条件r(A)=r(.A)=n①选项A.导出组Ax=0仅有零解只能说明r(A)=n,并不能保证r(A)=r(.A)=n,故A错误;②选项B.n元线性方程组Ax=b