n元齐次线性方程组ax=0有非零解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:28:23
不对.Ax=b有无穷多解,A不满秩,Ax=0有非零解;反之未必,Ax=0有非零解,A不满秩,但Ax=b可能无解.如有解则有无穷多解.
必须无解.因为x的秩<b的秩.
是的如果增广矩阵(A|b)的秩r(A|b)=r(A)那么就有解不相等就无解因为r(A)=n时相应的齐次线性方程组只有非零解非齐次线性方程组就有唯一解r(A)
因为r(A)=r所以Ax=0的基础解系含n-r个解向量.对Ax=0的任一个解向量,都可由它的任意n-r个线性无关的解向量线性表示(否则这n-r+1个解线性无关,与A的基础解系含n-r个向量矛盾)所以它
AX=0相当于AX=B中的B那列全部为零.定理中X=detB/detA.(下标我打不出来)当AX=B有唯一解时,AX=0即B的值全为零的时候.detB当然为零.就只有零解.
1.必要性:反证.若|A|不等0,则由Crammer法则知有唯一解,与已知矛盾2.充分性:若有解,则由|A|=0知r(A)
n元线性方程组AX=b有唯一解的充分必要条件是r(A)=r(A,b)=nr(A)=n并不能保证r(A)=r(A,b)比如增广矩阵=111011001r(A)=2,r(A,b)=3
R(A)=R(A,b)
设n元非齐次线性方程组AX=B有解,其中A为(n+1)×n矩阵,则|(A|B)|=0再问:怎么算的,为什么?再答:AX=B有解,所以A的秩等于(A|B)的秩,所以(A|B)不是满秩的。
A为n维行向量,意味着它的秩是1,即R(A)=1,基础解系的向量个数为n-R(A)=n-1.明白了吗?再问:为什么意味着秩为1再答:您好!秩的定义是:设在矩阵A中有一个不等于0的r阶子式D,且所有r+
当方程个数等于未知量个数时,A的行列式等于0,AX=0有非零解当方程个数小于未知量个数,一定有非零解
有非零解,也就是R(A)小于N.1.那么方程的个数要小于未知数的个数(直观上看这个方程组是扁而长,)2.等价于A的列向量线性相关(对系数矩阵A做列分块可得向量形式:a1x1+a2x2+~~~+anxn
齐次线性方程组Am×nxn×1=0m×1有非零解的充分必要条件是系数矩阵的秩小于方程未知数的个数.即:r<n.故应选B.
很明显b=2,a不等于1时r(A)=3=n,你见过3个向量组的秩为4的吗?你理解错了.
a,b,d正确.a:Ax=0有仅有0解,A为满秩矩阵,则A的行秩=N,则A的增广阵行秩也为N,则A的增广阵秩为N,由判定定理可得结论;b:Ax=b有无穷多个解,由非齐次判定定理R(A,b)=R(A)<
R(A)=R(A:β)=n
由于n元线性方程组Ax=b有唯一解的充要条件r(A)=r(.A)=n①选项A.导出组Ax=0仅有零解只能说明r(A)=n,并不能保证r(A)=r(.A)=n,故A错误;②选项B.n元线性方程组Ax=b
AX=0只有零解,可推出:R(A)=N.即A的秩为N.而A可为k*N矩阵,其中k>=N.即A不一定是N阶方阵.