n是大于3的整数,求证代数式的可以被120整除
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:57:03
这是南昌的的考题吧我也考了告诉你因为n^3=n^2*n不妨设n^3=(a+b)(a-b)因为都为正整数所以(a+b)>(a-b),n^2>n所以a+b=n^2a-b=n解出来a=(n^2+n)/2,b
证明:∵n3=(n2)2•4n,=(n2)2[(n+1)2-(n-1)2],=[n2(n+1)]2-[n2(n-1)]2,∵n是大于1的整数,∴n(n+1),n(n-1)不仅大于1,而且均能被2整除,
假设所有小于n的素数为p1,p2,...,psn=3时,命题显然成立n>3 则p1*p2*...*ps
假设2^n>2n+1是成立的则2^(n+1)=2*2^n>2*(2n+1)2*(2n+1)-[2(n+1)+1]=4n+2-(2n+3)=2n-1>0所以2^(n+1)>2(n+1)+1也就是说加入满
n=3时,2^3=8>2*3+1,2的n次方大于2n+1成立设n≤k,k>3时成立则:2^(k+1)=2*2^k>2*(2k+1)=4k+2>2k+8>2(k+1)+1n=k+1时成立所以,2的n次方
y=3n+5y为被除数n除数
n/【(n+3)(n-3)-(n+2)(n-2)】=n/(n平方-9-n平方+4)=n/(-5)因为n/(-5)是整数,所以n是所有5的倍数
(n+1)^n=(n+1)^2*(n+1)^(n-2)(n+1)^(n-2)>1所以n^(n+1)>(n+1)^2
n^3=a^2-b^2=(a+b)(a-b)a+b=n^2a-b=na=n(n+1)/2b=n(n-1)/2a,b都为整数再问:能不能在细一些哦,我有点看不懂,谢谢!再答:注:n^3即n的三次方,我相
n^3=a^2-b^2=(a+b)(a-b)a+b=n^2a-b=na=n(n+1)/2b=n(n-1)/2a,b都为整数
n为奇数时,n^3=(2k+1)^3=8k^3+12k^2+6k+1=(8k^3+12k^2+6k+1)*1=(4k^3+6k^2+3k+1+4k^3+6k^2+3k)(4k^3+6k^2+3k+1-
原式=(n²-9)-(n²-16)=77=1×7即7是质数,因此能整出上述代数式的数字是7,再问:1.(2a-3b)(-2a+3b)2.(2a-3b)(2a+3b)3.20又1/9
M²+N²2MNM²-N²
(n+3)(n-3)-(n-1)²=n²-9-(n²-2n+1)=2n-10=2*(n-5)所以答案是2
这个代数式结果就是-5,所以n是尾数是5或0的整数
(n+3)(n-3)-(n+2)(n-2)=n的平方-9-(n的平方-4)=-5因此这样的整数有1,5,-1和-5
m^4+4n^4=m^4+4m^2n^2+4n^4-4m^2n^2=(m^2+2n^2)^2-4m^2n^2=(m^2-2mn+2n^2)(m^2+2mn+2n^2)所以m^4+4n^4一定是合数.
证明:x^n+y^n=z^n(x^2)*[x^(n-2)]+(y^2)*[y^(n-2)]=(z^2)*[z^(n-2)]易知x^2+y^2=z^2存在着无穷的整数解!若x^(n-2)=y^(n-2)