n阶矩阵A满足A*A 2A-E=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:59:51
设A是n阶矩阵,满足AA^T=E(E是n阶单位矩阵),A^T是A的转置矩阵,且|A|

E+A^T=(E+A)^T两边取行列式|E+A^T|=|(E+A)^T|=|E+A|再问:甚妙甚妙!!!非常感谢!这个题我明白了。但是这个题里面A^T=A这个式子能不能成立呢?也就是说,已知AA^T=

设n阶矩阵A满足A平方=A,E为n阶单位矩阵,证明r(A)+r(A-E)=n.

n阶矩阵A满足A平方=A===>r(A)≤n当r(A)=n时,===>A=E===>r(A-E)=0===>r(A)+r(A-E)=n当r(A)A为至少有一行是全0的单位矩阵===>r(A)+r(A-

设n阶矩阵A满足A^2=A,且r(A)=r,则|2E-A|=

因为A^2=AAα=λαλ^2=λ解得λ=1或0由于r(A)=r所以n阶矩阵A与对角矩阵1..1.1...0.0.0相似,其中λ=1为r重特征值,λ=0为n-r个则2E-A的特征值为1(r重),2(n

n阶矩阵A满足A^m=O证明对任意实数k,E+kA为可逆矩阵

经济数学团队为你解答.再问:证明A特征值全为零和证明下一步E+kA特征值为1有什么关系吗?再答:有关系。若a是A的特征值,则1+ka是E+kA的特征值。

已知N阶可逆矩阵A满足2A(A-E)=A^3,求(E-A)^(-1)

因为2A(A-E)=A^3所以A^3-2A^2+2A=0所以A^2(A-E)-A(A-E)+A-E=-E即(A^2-A+E)(E-A)=E所以E-A可逆,且(E-A)^-1=A^2-A+E.

已知n阶矩阵A满足 A^2(A-2E)=3A-11E,证明A+2E可逆,并求(A+2E)^-1

因为A^2(A-2E)=3A-11E所以A^3-2A^2-3A+11E=0所以A^2(A+2E)-4A(A+2E)+5(A+2E)+E=0所以(A^2-4A+5E)(A+2E)=E所以A+2E可逆,且

线性代数问题:设A是n阶矩阵,满足AA'=|E|,|A|

AA'=E,是吧等式两边取行列式得|A|^2=1因为|A|

设n阶矩阵A满足A^2=A且A≠E,证明|A|=0

设j是的一特征值,则有X,使得AX=jX.而又有A^2×X=A(AX)=A(jX)=j(AX)=j^2×X因为A^2=A,故有:j^2×X=j×X即j^2=j求得j=0j=1由A^2=A有A^2-A-

设A是n阶矩阵,n是奇数,满足AA^T=E,/A/=1,求/A-E/

A-E=A-AA^T=A(E-A^T)=A(E-A)^T,两边取行列式,得|A-E|=|A|×|(E-A)^T|=|E-A|=(-1)^n×|A-E|=-|A-E|所以,|A-E|=0

设N阶矩阵A满足A^2-2A+3E=0 ,则秩A=N

对.A(A-2E)=-3E,A可逆,A^(-1)=-(A-2E)/3

若n阶矩阵A满足A^2-A+E=0,证明A为非奇异矩阵

因为A^2-A+E=0所以A(A-E)=-E所以A可逆,且A^-1=-(A-E)=E-A

n阶矩阵A满足A²-3A+2E=0,-证明A-3E是可逆矩阵

刚看到因为A^2-3A+2E=0所以A(A-3E)=-2E所以A-3E可逆,且(A-3E)^-1=(-1/2)A.

已知n阶矩阵A满足矩阵方程A^2-2A-3E=0,且A-E可逆,求A-E的逆矩阵?

因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).

n阶矩阵A满足A^m=O证明对任意实数k,E+kA为可逆矩阵.

因为A^m=O,即A为幂零矩阵,所以A的特征值只有0,从而对任意实数k,E+kA的特征值只能是1,|E+kA|等于其所有特征值的乘积,故不为0,所以E+kA为可逆矩阵.

设n阶矩阵A满足A^2-5A+5E=0,其中E为n阶单位矩阵,则(A-2E)^(-1)=

首先A^2-5A+6E=E,而A^2-5A+6E可分解为(A-2E)x(A-3E),所以(A-2E)^(-1)=A-3E.

设A是n阶矩阵,满足A^2-A-2E=o,证明r(A-2E)r(A+E)=n

(A-2E)(A+E)=0所以r(A+E)小于等于n-r(A-2E)即r(A-2E)+r(A+E)小于等于n又因为r(A-2E)+r(A+E)大于等于r(A-2E,A+E)=r(A-2E,3E)=n所

设n阶矩阵A满足A^2=E,且|A+E|≠0,证明A=E

/>n阶矩阵A满足A^2=E,===》矩阵A的零化多项式无重根,并且根只能为正负1,===》矩阵A的最小多项式无重根,并且根只能为正负1,===》矩阵A可以对角化,并且矩阵A的特征值只能为正负1,又因